回溯
1.什么是回溯
回溯是递归的副产品,只要有递归就会有回溯。
2.回溯法的效率
- 回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案
- 如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。
3.回溯法能解决的问题
- 组合问题:N个数里面按一定规则找出k个数的集合
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 棋盘问题:N皇后,解数独等等
4.如何理解回溯法
- 回溯法解决的问题都可以抽象为树形结构。
- 集合的大小构成了树的宽度,递归的深度构成了树的深度。
5.回溯法模板
-
回溯函数模板返回值以及参数
返回值:一般无返回值
参数:不好确定,一般先写逻辑,然后需要什么参数就填什么参数def backtracking(参数)
-
回溯函数终止条件
一般来说(不需剪枝),搜索到叶子节点的时候就是找到了一个答案,保存该答案,并结束本层递归即可。
if (终止条件) { 存放结果; return; }
-
回溯搜索的遍历过程
回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) { 处理节点; backtracking(路径,选择列表); // 递归 回溯,撤销处理结果 }
-
最终模板框架为:
def backtracking(参数) { if (终止条件) { 存放结果; return; } for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) { 处理节点; backtracking(路径,选择列表); // 递归 回溯,撤销处理结果 } }