算法_回溯_基础知识和总结

回溯

1.什么是回溯

回溯是递归的副产品,只要有递归就会有回溯。

2.回溯法的效率

  1. 回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案
  2. 如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。

3.回溯法能解决的问题

  1. 组合问题:N个数里面按一定规则找出k个数的集合
  2. 切割问题:一个字符串按一定规则有几种切割方式
  3. 子集问题:一个N个数的集合里有多少符合条件的子集
  4. 排列问题:N个数按一定规则全排列,有几种排列方式
  5. 棋盘问题:N皇后,解数独等等

4.如何理解回溯法

  1. 回溯法解决的问题都可以抽象为树形结构。
  2. 集合的大小构成了树的宽度,递归的深度构成了树的深度。

5.回溯法模板

  1. 回溯函数模板返回值以及参数

    返回值:一般无返回值
    参数:不好确定,一般先写逻辑,然后需要什么参数就填什么参数

     def backtracking(参数)
    
  2. 回溯函数终止条件

    一般来说(不需剪枝),搜索到叶子节点的时候就是找到了一个答案,保存该答案,并结束本层递归即可。

     if (终止条件) {
         存放结果;
         return;
     }
    
  3. 回溯搜索的遍历过程

    回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。
    在这里插入图片描述

     for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
         处理节点;
         backtracking(路径,选择列表); // 递归
         回溯,撤销处理结果
     }
    
  4. 最终模板框架为:

     def backtracking(参数) {
         if (终止条件) {
             存放结果;
             return;
         }
     
         for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
             处理节点;
             backtracking(路径,选择列表); // 递归
             回溯,撤销处理结果
         }
     }
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值