OpenCv-C++-轮廓发现

#include<opencv2/opencv.hpp>
#include<iostream>
#include<math.h>

using namespace cv;
using namespace std;

Mat src,dst;
void contours(int, void*);
int thresholdMax = 255;
int thresholdvalue = 100;
int main(int argc, char** argv)
{
	src = imread("D:/test/fish.png");
	if (!src.data)
	{
		printf("图片为空");
		return -1;
	}
	cvtColor(src, dst, CV_BGR2GRAY);
	namedWindow("output image");
	createTrackbar("Canny thresh", "output image", &thresholdvalue, thresholdMax, contours);
	contours(0,0);
	imshow("input image", src);
	waitKey(0);
	return 0;
}

void contours(int, void *)
{
	Mat canny_output;
	dst = Mat::zeros(src.size(), CV_8UC3);
	vector<vector<Point>> contours;
	vector<Vec4i> hierachy;
	/*边缘检测,thresholdvalue,thresholdvalue*2这两个参数比值一般来说是1:1.5、1:2、1:3*/
	Canny(src, canny_output, thresholdvalue, thresholdvalue * 2, 3, false);
	findContours(canny_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
	RNG rng(12345);
	for (size_t i = 0; i < contours.size(); i++)
	{
		Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255),rng.uniform(0, 255));
		drawContours(dst, contours, (int)i, color, 1, LINE_AA, hierachy, 0, Point(0, 0));

	}
	imshow("output image", dst);
}

大致步骤:

  1. 先将图片转化为灰度图像
  2. 进行边缘检测
  3. 找到轮廓findContours
  4. 绘制轮廓drawContours

运行结果:

输入
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值