指数函数exp(x)相关

常数e和exp(x)的由来

计算复利

假设本金为 a a a, 存期一年,银行有几下集中定期利率可以选择:

  • 年利率100%
    a ( 1 + 100 % ) = 2 a a(1+100\%)=2a a(1+100%)=2a
  • 半年利率: 100%/2= 50%
    a ( 1 + 50 % ) 2 = 2.25 a a(1+50\%)^2=2.25a a(1+50%)2=2.25a
  • 季度利率 100%/4= 25%
    a ( 1 + 25 % ) 4 ≈ 2.44 a a(1+25\%)^4\approx2.44a a(1+25%)42.44a
  • 月利率 100%/12= 8.333%
    a ( 1 + 8.333 % ) 12 ≈ 2.61 a a(1+8.333\%)^{12}\approx2.61a a(1+8.333%)122.61a

若每时每刻都计算利率,则利率为 1 / n 1/n 1/n,则一年之后,本息和为:
lim ⁡ n → ∞ a ( 1 + 1 n ) n \lim_{n\rightarrow\infty}a(1+\frac1n)^n nlima(1+n1)n
除以 a a a,可以得到本金a存到银行一年,翻的倍数,则倍数等于:
lim ⁡ n → ∞ ( 1 + 1 n ) n \lim_{n\rightarrow\infty}(1+\frac1n)^n nlim(1+n1)n

n n n趋于无穷大的时候,则上面的式子趋于一个常数,约为:
lim ⁡ n → ∞ ( 1 + 1 n ) n ≈ 2.7182 \lim_{n\rightarrow\infty}(1+\frac1n)^n\approx2.7182 nlim(1+n1)n2.7182

上面是常数 e e e的定义式

exp(x)

后来,欧拉将上式一般化,将利率等于100%,变为了一个变量 x x x,形成下式函数:
e x p ( x ) = lim ⁡ n → ∞ ( 1 + x n ) n exp(x)=\lim_{n\rightarrow\infty}(1+\frac{x}{n})^n exp(x)=nlim(1+nx)n

( lim ⁡ n → ∞ ( 1 + 1 n / x ) n / x ) x = e x (\lim_{n\rightarrow\infty}(1+\frac{1}{n/x})^{n/x})^x=e^x (nlim(1+n/x1)n/x)x=ex
这便是指数函数的由来,最早,指数函数的底数都是 e e e,后来在此基础上推出了其他数为底的指数函数。

  • exponential function必须通过微积分的办法计算得到,而通过代数的方法是不可以的。因为要用到极限的概念。
  • y = e x , d y d x = y y=e^x,\frac{dy}{dx}=y y=ex,dxdy=y,对于此函数,其导数与原函数相同,即其斜率的增长和函数值的增长相同。

应用

常数 e e e体现了自然增长的极限

  • 即使每时每刻都在计算利息,利滚利,增长倍数也有一个确定的最大值

利滚利 和自然生殖
等角螺线等

指数函数的泰勒展开

泰勒公式的初衷是用多项式来近似表示函数在某点周围的情况。比如说,指数函数在 x = 0的附近可以用以下多项式来近似地表示:

e x ≈ 1 + x + x 2 2 ! + x 3 3 ! + ⋯ + x n n ! {\textrm {e}}^{x}\approx 1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+\cdots +{\frac {x^{n}}{n!}} ex1+x+2!x2+3!x3++n!xn

可通过 e x e^x ex的导数和其本身相等的概念,推导出上面的泰勒级数

  • 根据 y = e x , d y d x = y y=e^x,\frac{dy}{dx}=y y=ex,dxdy=y,和 y = 1 , x = 0 y=1, x=0 y=1,x=0

  • 当x=1时,可以近似计算得到常数 e e e的值

离散r.v.概率分布——泊松分布

例子

在这里插入图片描述

推导原理

在这里插入图片描述

  • n要趋于无穷大,p要趋于0
  • 泊松分布和二项式分布的关系

泊松分布和二项式分布的关系

在这里插入图片描述

应用

在这里插入图片描述

  • 因为此分布的 λ = 4.6 \lambda=4.6 λ=4.6,所以期望值也等于4.6,所以从图像上看,放射数等于5或者6时的概率较高。

连续r.v.概率分布——exp分布

引用

An Introduction to the Poisson Distribution
5-3:連續機率分佈 I
[微积分重点][MIT][Strang]4_指数函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值