最小二乘拟合三次曲面

本文介绍了如何在最小二乘法的基础上扩展至三次曲面拟合,对比了与二次曲面的区别,强调了额外系数的处理,并提及了使用OpenCV库的实际应用,通过线性方程组求解10个系数的三次曲面方程。
摘要由CSDN通过智能技术生成

最小二乘法实现三次曲面拟合

最小二乘拟合二次曲面的方法有很多博主有创作,比如
https://blog.csdn.net/weixin_43319685/article/details/103167458
我在此基础上推导最小二乘法拟合三次曲面的方法,大体思路差不多,如有问题请指正,使用Opencv4 cpp实现的代码我将放在另一篇博客中。
假设三次曲面方程为:
在这里插入图片描述相比二次曲面方程,三次曲面方程多了4个系数,从6个系数增加到10个系数,采用最小二乘法求解,使得下面的式子误差最小:
\sigma {2}=\sum_{i=1}{n}[I(x_{i},y_{i})-z_{i}]{2}=\sum_{i=1}{n}[(ax_{i}{3}+by_{i}{3}+cx_{i}{2}y_{i}+dx_{i}y_{i}{2}+ex_{i}{2}+fy_{i}{2}+gx_{i}y_{i}+hx_{i}+iy_{i}+j)-z_{i}]^{2}
应满足:
\frac{\partial \sigma ^{2}}{\partial a}=\frac{\partial \sum_{i=1}{n}[I(x_{i},y_{i})-z_{i}]{2}}{\partial a}=\sum_{i=1}{n}2x_{i}{3}[(ax_{i}{3}+by_{i}{3}+cx_{i}{2}y_{i}+dx_{i}y_{i}{2}+ex_{i}{2}+fy_{i}{2}+gx_{i}y_{i}+hx_{i}+iy_{i}+j)-z_{i}]=0
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
写成矩阵形式在这里插入图片描述

其中各项为
A=\sum_{}^{}\begin{bmatrix}
x{6}&x{3}y{3}&x{5}y&x{4}y{2}&x{5}&x{3}y{2}&x{4}y&x{4}&x{3}y&x^{3}\
x{3}y{3} & y^{6} & x{2}y{4} & xy^{5} & x{2}y{3} & y^{5} & xy^{4} & xy^{3} & y^{4} & y^{3}\
x^{5}y & x{2}y{4} & x{4}y{2} & x{3}y{3}  & x^{4}y  & x{2}y{3}  & x{3}y{2}  & x^{3}y  & x{2}y{2}  & x^{2}y \
x{4}y{2} & xy^{5} & x{3}y{3} & x{2}y{4} & x{3}y{2} & xy^{4} & x{2}y{3} & x{2}y{2} & xy^{3} & xy^{2}\
x^{5} & x{2}y{3} & x^{4}y & x{3}y{2} & x^{4} & x{2}y{2} & x^{3}y & x^{3} & x^{2}y & x^{2}\
x{3}y{2} & y^{5} & x{2}y{3} & xy^{4} & x{2}y{2} & y^{4} & xy^{3} & xy^{2} & y^{3} & y^{2}\
x^{4}y & xy^{4} & x{3}y{2} & x{2}y{3} & x^{3}y & xy^{3} & x{2}y{2} & x^{2}y & xy^{2} & xy\
x^{4} & xy^{3} & x^{3}y & x{2}y{2} & x^{3} & xy^{2} & x^{2}y & x^{2} & xy & x\
x^{3}y & y^{4} & x{2}y{2} & xy^{3} & x^{2}y & y^{3} & xy^{2} & xy & y^{2} & y\
x^{3} & y^{3} & x^{2}y & xy^{2} & x^{2} & y^{2} & xy & x & y & 1
\end{bmatrix}

在这里插入图片描述
在这里插入图片描述最后通过求解线性方程组可得三次曲面方程的10个系数

  • 15
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
在MATLAB中,可以使用最小二乘方法拟合三维曲面方程。下面是一种常用的方法: 假设有一组三维数据点(x, y, z),要拟合出一个三维曲面方程。 1. 定义拟合曲面的形式,例如二次多项式:z = a*x^2 + b*y^2 + c*x*y + d*x + e*y + f 2. 构建系数矩阵A和结果向量b。根据二次多项式形式,将每个数据点的x、y值代入方程并构建矩阵A和向量b。 3. 使用最小二乘方法求解方程 Ax=b,其中x是待求的系数向量。在MATLAB中,可以使用函数 lscov 来实现最小二乘拟合。 下面是一个示例代码: ```matlab % 生成一组示例数据 x = randn(100, 1); y = randn(100, 1); z = 2*x.^2 - 3*y.^2 + 0.5*x.*y + 0.1*x + 0.2*y + 1.5 + 0.1*randn(100, 1); % 构建系数矩阵A和结果向量b A = [x.^2, y.^2, x.*y, x, y, ones(size(x))]; b = z; % 使用最小二乘方法拟合曲面方程 coefficients = lscov(A, b); % 输出拟合的曲面方程 syms x y z_fit = coefficients(1)*x^2 + coefficients(2)*y^2 + coefficients(3)*x*y + coefficients(4)*x + coefficients(5)*y + coefficients(6); pretty(z_fit) ``` 在以上示例中,首先生成了一组示例数据(x, y, z),然后根据二次多项式形式构建了系数矩阵A和结果向量b。接着使用 lscov 函数求解方程 Ax=b,并得到了拟合的曲面方程。 请注意,这只是其中一种方法,具体的拟合方式取决于曲面的形式和数据的特点。你可以根据需要自定义不同的拟合形式和方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值