基于Insightface的人脸识别

本文介绍了基于Insightface的人脸识别项目,包括论文和源码链接,详细阐述了从数据准备、人脸检测对齐、训练集与验证集创建、网络训练到模型测试的全过程。提供了一个使用lfw数据集的实例,并提到了活体检测在实际应用中的重要性。
摘要由CSDN通过智能技术生成

Insightface是在人脸识别方向继facenet:https://github.com/davidsandberg/facenet后又一个比较完善的开源项目。

先给出论文地址:https://arxiv.org/pdf/1801.07698.pdf                           项目源码地址:deepinsight/insightface

这里也提供一个如何运行该项目流程的链接,可以对齐进行参考:https://zhuanlan.zhihu.com/p/33750684

我也会将自己精简版和加注释和理解以及整理好后的训练和测试代码上传自己的Github代码仓库;链接:https://github.com/Danbinabo

InsightFace库是对我们上述论文中提出算法的开源实现. 其中不仅仅包括我们自己的算法, 也包括其他常见的人脸loss, 比如Softmax, SphereFace, AMSoftmax, CosFace, Triplet Loss等等. 除了代码实现以外, 我们还提供了打包对齐好的人脸训练数据供下载, 免除了一大堆数据准备的工作. 研究人员可以专注于人脸识别的算法实验, 工业界也可以方便的根据自己需求训练或者拿我们提供的高精度预训练模

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值