文章目录
Cauchy-Riemann条件(CR条件)是复分析中判断一个复函数在某一点上是否解析的重要条件。复函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z) = u(x, y) + iv(x, y) f(z)=u(x,y)+iv(x,y),其中 z = x + i y z = x + iy z=x+iy,在直角坐标系中满足以下Cauchy-Riemann方程:
∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y = − ∂ v ∂ x \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} ∂x∂u=∂y∂v,∂y∂u=−∂x∂v
要在极坐标下表示Cauchy-Riemann条件,首先我们将直角坐标 ( x , y ) (x, y) (x,y) 转换为极坐标 ( r , θ ) (r, \theta) (r,θ),通过以下关系:
x = r cos θ , y = r sin θ x = r\cos\theta, \quad y = r\sin\theta x=rcosθ,y=rsinθ
假设复函数 f ( z ) = f ( r , θ ) = u ( r , θ ) + i v ( r , θ ) f(z) = f(r, \theta) = u(r, \theta) + iv(r, \theta) f(z)=f(r,θ)=u(r,θ)+iv(r,θ),其中 u u u 和 v v v 是 r r r 和 θ \theta θ 的函数。
推导过程
由复合函数求导可得:
∂
u
∂
r
=
∂
u
∂
x
∂
x
∂
r
=
∂
u
∂
x
cos
θ
=
∂
v
∂
y
(
sin
x
)
′
=
∂
v
∂
y
∂
y
∂
θ
1
r
=
1
r
∂
v
∂
θ
\begin{aligned} \frac{\partial u}{\partial r}&=\frac{\partial u}{\partial x}\frac{\partial x}{\partial r}=\frac{\partial u}{\partial x}\cos{\theta}\\\ &=\frac{\partial v}{\partial y}(\sin x)'=\frac{\partial v}{\partial y}\frac{\partial y}{\partial \theta}\frac{1}{r}=\frac{1}{r}\frac{\partial v}{\partial \theta} \end{aligned}
∂r∂u =∂x∂u∂r∂x=∂x∂ucosθ=∂y∂v(sinx)′=∂y∂v∂θ∂yr1=r1∂θ∂v
同样地,可以得到:
∂
u
∂
θ
=
−
r
∂
v
∂
r
\frac{\partial u}{\partial \theta}=-r\frac{\partial v}{\partial r}
∂θ∂u=−r∂r∂v