C-R条件在极坐标中的表示推导

文章目录


Cauchy-Riemann条件(CR条件)是复分析中判断一个复函数在某一点上是否解析的重要条件。复函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z) = u(x, y) + iv(x, y) f(z)=u(x,y)+iv(x,y),其中 z = x + i y z = x + iy z=x+iy,在直角坐标系中满足以下Cauchy-Riemann方程:
∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y = − ∂ v ∂ x \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} xu=yv,yu=xv

要在极坐标下表示Cauchy-Riemann条件,首先我们将直角坐标 ( x , y ) (x, y) (x,y) 转换为极坐标 ( r , θ ) (r, \theta) (r,θ),通过以下关系:

x = r cos ⁡ θ , y = r sin ⁡ θ x = r\cos\theta, \quad y = r\sin\theta x=rcosθ,y=rsinθ

假设复函数 f ( z ) = f ( r , θ ) = u ( r , θ ) + i v ( r , θ ) f(z) = f(r, \theta) = u(r, \theta) + iv(r, \theta) f(z)=f(r,θ)=u(r,θ)+iv(r,θ),其中 u u u v v v r r r θ \theta θ 的函数。

推导过程

由复合函数求导可得:
∂ u ∂ r = ∂ u ∂ x ∂ x ∂ r = ∂ u ∂ x cos ⁡ θ   = ∂ v ∂ y ( sin ⁡ x ) ′ = ∂ v ∂ y ∂ y ∂ θ 1 r = 1 r ∂ v ∂ θ \begin{aligned} \frac{\partial u}{\partial r}&=\frac{\partial u}{\partial x}\frac{\partial x}{\partial r}=\frac{\partial u}{\partial x}\cos{\theta}\\\ &=\frac{\partial v}{\partial y}(\sin x)'=\frac{\partial v}{\partial y}\frac{\partial y}{\partial \theta}\frac{1}{r}=\frac{1}{r}\frac{\partial v}{\partial \theta} \end{aligned} ru =xurx=xucosθ=yv(sinx)=yvθyr1=r1θv
同样地,可以得到:
∂ u ∂ θ = − r ∂ v ∂ r \frac{\partial u}{\partial \theta}=-r\frac{\partial v}{\partial r} θu=rrv

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值