矩阵的乘法口诀(一)

还记得小学时背过的“九九乘法表”吗?那是刚刚学习乘法的小学生的一道难关。我们小时候用过的铁制文具盒盖子里面就印着“乘法表”,像一个上三角形矩阵。

有一个笑话:上小学二年级的明明回家告诉妈妈:“今天数学考试有一道题问 3 × 7 = ? 3\times 7=? 3×7=?,我不会做。快下课时我不管三七二十一,写了个28上去!”这个笑话说明光会背公式是没有用的!

言归正传。大一的同学学习矩阵的乘法是也会觉得挺抽象的。所以,今天我们就来聊聊“矩阵乘法”这点事儿!

符号

A A A n n n阶方阵.
e i = ( 0 , ⋯   , 0 , 1 , 0 , ⋯   , 0 ) T e_i=(0,\cdots,0,1,0,\cdots,0)^T ei=(0,,0,1,0,,0)T, 其中第 i i i个分量等于 1 1 1.
x = ( x 1 , x 2 , ⋯   , x n ) T x=(x_1,x_2,\cdots,x_n)^T x=(x1,x2,,xn)T.
小写希腊字母如 α \alpha α常常表示 n n n维列向量,而 α T \alpha^T αT则表示 n n n维行向量.
r o w i row_i rowi指矩阵 A A A的第 i i i行, c o l i col_i coli指矩阵 A A A的第 i i i列.
我们仅考虑实数域。

###乘法口诀

矩阵 A B AB AB来相乘,左右首先要分清;

乘 法 没 有 消 去 律 , 左 右 因 子 不 能 去 ; 乘法没有消去律,左右因子不能去; ;

矩 阵 乘 法 真 有 趣 , 且 听 我 来 说 详 细 : 矩阵乘法真有趣,且听我来说详细: :

行 乘 以 列 得 实 数 , 效 果 等 于 做 内 积 ; 行乘以列得实数,效果等于做内积; ;

非 零 列 乘 非 零 行 , 积 乃 方 T 阵 秩 为 1 ; 非零列乘非零行,积乃方^T阵秩为1; T1

A A A左乘以列向量,等于 A A A列作组合;

A A A e i e_i ei很容易,直将 i i i列来提取;

行向量左乘以 A A A, 等于 A A A行作组合;

e i e_i ei转置把 A A A乘, i i i行取出便为积;

初等矩阵左右乘,行列变换显神奇。

注释及应用

  1. 行乘以列得实数,效果等于做内积;
    非零列乘非零行,积乃方阵秩为1.
    解释:
    • α T β \alpha^T\beta αTβ是一个实数. 且 α T β = β T α \alpha^T\beta =\beta^T\alpha αTβ=βTα.

    • α β T \alpha\beta^T αβT是一个方阵。当 α ≠ 0 , β ≠ 0 \alpha\ne 0, \beta\ne0 α̸=0,β̸=0时, α β T \alpha\beta^T αβT是一个秩等于1的方阵.

    • t r ( α β T ) = α T β tr(\alpha\beta^T)=\alpha^T\beta tr(αβT)=αTβ.这里 t r ( α β T ) tr(\alpha\beta^T) tr(αβT)表示方阵 α β T \alpha\beta^T αβT的迹,就是它的主对角元的和.

例1 设
α = ( 1 2 3 ) , β T = ( 2 1 2 ) , A = α β T , \alpha=\begin{pmatrix}1\\2\\3\end{pmatrix}, \beta^T=(2\quad 1\quad 2),A=\alpha\beta^T, α=123,βT=(212),A=αβT, 计算: A n . A^n. An.

解: A n = α β T α β T ⋯ α β T α β T = α ( β T α ) ⋯ ( β T α ) β T = α ( β T α ) n − 1 β T = ( β T α ) n − 1 α β T = ( β T α ) n − 1 A A^n=\alpha\beta^T\alpha\beta^T\cdots\alpha\beta^T\alpha\beta^T=\alpha(\beta^T\alpha) \cdots(\beta^T\alpha)\beta^T =\alpha(\beta^T\alpha)^{n-1}\beta^T=(\beta^T\alpha)^{n-1}\alpha\beta^T=(\beta^T\alpha)^{n-1}A An=αβTαβTαβTαβT=α(βTα)(βTα)βT=α(βTα)n1βT=(βTα)n1αβT=(βTα)n1A
因为
β T α = 1 × 2 + 2 × 1 + 3 × 2 = 10 , \beta^T\alpha=1\times2+2\times1+3\times2=10, βTα=1×2+2×1+3×2=10,所以,
A n = 1 0 n − 1 A , A^n=10^{n-1}A, An=10n1A,
其中,
A = ( 2 1 2 4 2 4 6 3 6 ) . A=\begin{pmatrix}2&1&2\\4&2&4\\6&3&6\end{pmatrix}. A=246123246.

  1. A A A左乘以列向量,等于 A A A列作组合;
    A A A e i e_i ei很容易,直将 i i i列来提取;
    解释:

( 1 ) A ( x 1 x 2 ⋮ x n ) = x 1 c o l 1 + x 2 c o l 2 + ⋯ + x n c o l n . (1)\quad A\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix}=x_1col_1+x_2col_2+\cdots+x_ncol_n. (1)Ax1x2xn=x1col1+x2col2++xncoln.

( 2 ) A ( 0 ⋮ 1 ⋮ 0 ) = c o l i . (2)\quad A\begin{pmatrix}0\\\vdots\\1\\\vdots\\0\end{pmatrix}=col_i. (2)A010=coli.

例2 计算:

( 1 ) ( 1 2 1 2 − 1 4 0 2 2 ) ( 1 1 1 ) ; (1)\begin{pmatrix}1&2&1\\2&-1&4\\0&2&2\end{pmatrix}\begin{pmatrix}1\\1\\1\end{pmatrix}; 1120212142111;

( 2 ) ( 1 2 1 2 − 1 4 0 2 2 ) ( 1 0 1 ) ; (2)\begin{pmatrix}1&2&1\\2&-1&4\\0&2&2\end{pmatrix}\begin{pmatrix}1\\0\\1\end{pmatrix}; 2120212142101;

( 3 ) ( 1 2 1 2 − 1 4 0 2 2 ) ( 0 0 1 ) ; (3)\begin{pmatrix}1&2&1\\2&-1&4\\0&2&2\end{pmatrix}\begin{pmatrix}0\\0\\1\end{pmatrix}; 3120212142001;

( 4 ) ( 1 2 1 2 − 1 4 0 2 2 ) ( 1 1 0 1 0 0 1 1 1 ) (4)\begin{pmatrix}1&2&1\\2&-1&4\\0&2&2\end{pmatrix}\begin{pmatrix}1&1&0\\1&0&0\\1&1&1\end{pmatrix} 4120212142111101001

解:(1)由公式(1),

( 1 2 1 2 − 1 4 0 2 2 ) ( 1 1 1 ) = 1 ⋅ ( 1 2 0 ) + 1 ⋅ ( 2 − 1 2 ) + 1 ⋅ ( 1 4 2 ) = ( 4 5 4 ) . \begin{pmatrix}1&2&1\\2&-1&4\\0&2&2\end{pmatrix}\begin{pmatrix}1\\1\\1\end{pmatrix}=1\cdot\begin{pmatrix}1\\2\\0\end{pmatrix}+1\cdot\begin{pmatrix}2\\-1\\2\end{pmatrix}+1\cdot\begin{pmatrix}1\\4\\2\end{pmatrix}=\begin{pmatrix}4\\5\\4\end{pmatrix}. 120212142111=1120+1212+1142=454.

(2) 由公式(1),

( 1 2 1 2 − 1 4 0 2 2 ) ( 1 0 1 ) = 1 ⋅ ( 1 2 0 ) + 0 ⋅ ( 2 − 1 2 ) + 1 ⋅ ( 1 4 2 ) = ( 2 6 2 ) . \begin{pmatrix}1&2&1\\2&-1&4\\0&2&2\end{pmatrix}\begin{pmatrix}1\\0\\1\end{pmatrix}=1\cdot\begin{pmatrix}1\\2\\0\end{pmatrix}+0\cdot\begin{pmatrix}2\\-1\\2\end{pmatrix}+1\cdot\begin{pmatrix}1\\4\\2\end{pmatrix}=\begin{pmatrix}2\\6\\2\end{pmatrix}. 120212142101=1120+0212+1142=262.

(3) 由公式(2),

( 1 2 1 2 − 1 4 0 2 2 ) ( 0 0 1 ) = ( 1 4 2 ) . \begin{pmatrix}1&2&1\\2&-1&4\\0&2&2\end{pmatrix}\begin{pmatrix}0\\0\\1\end{pmatrix}=\begin{pmatrix}1\\4\\2\end{pmatrix}. 120212142001=142.

(4) 由(1)-(3)题,用左边的矩阵每次乘以右边矩阵的一列,得,

( 1 2 1 2 − 1 4 0 2 2 ) ( 1 1 0 1 0 0 1 1 1 ) = ( 4 2 1 5 6 4 4 2 2 ) . \begin{pmatrix}1&2&1\\2&-1&4\\0&2&2\end{pmatrix}\begin{pmatrix}1&1&0\\1&0&0\\1&1&1\end{pmatrix}=\begin{pmatrix}4&2&1\\5&6&4\\4&2&2\end{pmatrix}. 120212142111101001=454262142.

结束的话

掌握了上面的计算矩阵乘法的方法,一次算一列,是不是感觉特棒?

(未完待续)


更多内容,欢迎用微信扫描下图中的二维码,或搜索“大哉数学之为用”,免费关注微信公众号“大哉数学之为用”进行阅读。
在这里插入图片描述
如果您觉得本文对您有帮助,欢迎赞赏!您的支持是作者继续下去的动力!在这里插入图片描述

  • 4
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值