摘要
电力系统是现代社会不可或缺的基础设施之一,它的正常运行关系到整个社会的发展和稳定。电力系统潮流计算是电力系统运行分析的基础,它能够计算出电力系统各节点的电流、电压、功率等参数,为电力系统的稳定运行提供重要的参考依据。本文基于牛顿-拉夫逊法和PQ分解法,利用matlab编程实现电力系统潮流上机计算。本文的设计意义在于探索不同的潮流计算方法,提高电力系统潮流计算的准确性和效率。对比了牛顿-拉夫逊法和PQ分解法两种潮流计算方法,分析了它们的特点。牛顿-拉夫逊法适用于复杂的电力系统,可以处理任意类型的负荷和发电机,但需要较长的计算时间和较大的存储器。PQ分解法则适用于较小的电力系统,计算时间和存储空间要求较低,但对于非线性系统和不平衡负荷处理不够灵活。本文以陈珩教授的《电力系统稳态分析(第四板)》中的例4-4为例,解析了题目的给定条件,并通过矩阵计算得到了系统的节点电压和各支路潮流。程序设计中,本文给出了详细的程序流程图,并对结果进行了分析。通过对比牛顿-拉夫逊法和PQ分解法的结果,发现两种方法得出的潮流值基本一致,但牛顿-拉夫逊法耗时更长。
综上,本文基于牛顿-拉夫逊法和PQ分解法,利用matlab编程实现了电力系统潮流上机计算。本文的研究对电力系统的潮流计算具有一定的参考价值,为电力系统潮流计算提供了新的思路和方法。希望通过该研究,可以为电力系统的运行和管理提供更科学、更有效的决策支持,进而促进电力系统的发展和优化。
关键词:电力系统潮流上级计算;MATLAB;牛顿-拉夫逊法;PQ分解法
Power system power flow computer calculation
Abstract
Author's name: Zhang Yuchao Zip code: 071000
The power system is one of the indispensable infrastructures of modern society, and its normal operation is related to the development and stability of the whole society. Power system power flow calculation is the basis of power system operation analysis. It can calculate the current, voltage, power and other parameters of each node of the power system, and provide an important reference for the stable operation of the power system. Based on the Newton-Raphson method and PQ decomposition method, this paper uses matlab programming to realize the power system power flow calculation on the computer. The design significance of this paper is to explore different power flow calculation methods to improve the accuracy and efficiency of power system power flow calculation. Two power flow calculation methods, Newton-Raphson method and PQ decomposition method are compared, and their characteristics are analyzed. The Newton-Raphson method is suitable for complex power systems and can handle any type of loads and generators, but requires a long calculation time and a large memory. The PQ decomposition method is suitable for smaller power systems, and requires less computing time and storage space, but it is not flexible enough for nonlinear systems and unbalanced loads. This paper takes example 4-4 in Professor Chen Heng's "Steady State Analysis of Electric Power System (Fourth Board)" as an example, analyzes the given conditions of the topic, and obtains the node voltage of the system and the power flow of each branch through matrix calculation . In program design, this paper gives a detailed program flow chart and analyzes the results. By comparing the results of the Newton-Raphson method and the PQ decomposition method, it is found that the power flow values obtained by the two methods are basically the same, but the Newton-Raphson method takes longer.
In summary, based on the Newton-Raphson method and PQ decomposition method, this paper realizes the power system power flow calculation on the computer by using matlab programming. The research in this paper has a certain reference value for the power flow calculation of the power system, and provides a new idea and method for the power system power flow calculation. It is hoped that through this research, more scientific and effective decision support can be provided for the operation and management of the power system, and then the development and optimization of the power system can be promoted.
Key words: superordinate calculation of power system power flow; MATLAB; Newton-Raphson method; PQ decomposition method
目 录
三、题目解析(题目电气接线图,题目的给定条件,题目的矩阵计算等). 8
一、概述
1.1 设计背景
电力系统是指由发电机、输电线路、变电站、配电网和终端用户组成的电力生产、输送、分配和使用系统。电力系统的安全运行和合理经济的运行是保障人们生活和经济发展的重要保障之一。为了保障电力系统的安全运行和合理经济的运行,电力系统潮流计算技术应运而生。
电力系统潮流计算是指在给定系统负荷和发电机输出的条件下,计算各节点的电压、功率、线路电流等电气量的一种电力系统分析方法。计算的结果可以用于电力系统的规划、设计、运行与管理等方面,为电力系统的安全、稳定和经济运行提供重要支持。
我国电力系统潮流计算技术的发展始于20世纪60年代末期,迄今已有50多年的历史。在改革开放以来的30多年间,我国电力系统取得了快速发展,电网规模和复杂度不断提高,电力负荷和电力需求不断增长,电力市场化程度不断提高,电网安全稳定运行的要求也越来越高。在这样一个背景下,电力系统潮流计算技术得到了广泛的应用和发展。目前,我国电力系统潮流计算技术已经进入到了智能化、高效化、多功能化的阶段。深度融合了计算机技术、通信技术、控制技术、数据挖掘技术、人工智能等新技术,实现了电力系统智能化运行、自动化控制、多功能数据管理和分析等功能,推动了电力系统的科技进步和发展。未来,随着政策、技术、市场等多重因素的影响,我国电力系统潮流计算技术将会继续向着智能化、高效化、协同化的方向发展。
1.2 设计意义
电力系统潮流计算是电网计算的核心内容之一,它主要是研究电力系统运行状态下各节点的电压相角以及电流大小,从而确定电力系统的电力负荷分配和电力功率分配。潮流计算是电力系统设计、运行和故障分析的基础,对于确保电力系统的安全、稳定、经济运行具有重要意义。
1.2.1帮助电力系统规划处实现电力系统规划的最优化
通过潮流计算,可以确定电力系统的潮流分布、电压大小和电流距离等参数,从而为电力系统规划提供准确的数据和参考。通过对潮流分布的分析,可以确定电网容量、电力负荷分配和电压控制方案,进而实现电力系统规划的最优化。
1.2.2帮助电力系统运行部门实现电力系统的稳定运行
随着电力系统规模的扩大和负荷不断增加,电力系统的安全稳定性越来越受到关注。通过潮流计算,可以预测电力系统各节点的电压和电流变化情况,提前发现电力系统可能存在的问题,并采取相应的措施进行调整和优化。
1.2.3帮助电力系统故障分析和排除
在电力系统运行过程中,可能会出现各种故障,如线路短路、设备故障等。通过潮流计算,可以快速准确地定位故障点,并及时采取措施进行排除,确保电力系统的正常运行。
1.3设计要求
(1)采用matlab或者C语言编程计算
(2)输入原始的数据单独编写一个输入文件
(3)输出各个节点的迭代次数的数据和迭代次数
(4)自己设计编程结果分析曲线
(5)文献查阅,根据关键词在中国知网查阅
(6)附录中放完整的程序
(7)按照报告格式完成各个部分内容
(8)用visio软件画网络接线图、等值网络图、流程图等
二、计算方法
2.1牛顿拉夫逊法潮流计算
牛顿-拉夫逊法是求解潮流的最常用的方法。其核心在于修正方程的建立及求解。注意的是,修正方程的雅各比矩阵不是对称矩阵,但是稀疏矩阵;由于雅各比矩阵的元素与电压大小和相位有关,因此在每次迭代过程中都要重新形成雅各比矩阵,这是限制牛顿-拉夫逊法速度的最大因素。牛顿-拉夫逊法的收敛速度比高斯-塞德尔法快很多。
2.2 PQ分解法潮流计算
P-Q分解法由牛顿-拉夫逊法的节点电压以极坐标表示时发展而来。主要是根据电力网络的特性对牛-拉法的雅各比矩阵进行简化,变成常系数矩阵,因此在每次迭代过程中都不用重新形成系数矩阵。而且P-Q分解法的系数矩阵阶数较牛-拉法的低,还是对称矩阵。因此其收敛速度较牛-拉法快(其迭代次数比牛-拉法多,但其每次迭代的耗时少)。虽然P-Q分解法是在一定简化的基础上发展得到的,但由于其功率不平衡量的求解与牛-拉法完全一样(即P-Q分解法只对雅各比矩阵简化,不对功率不平衡量简化),而且收敛要求都一样的,因此最终得到的结果跟牛-拉法完全一样。注意的是在运用P-Q分解法时是有限制的,必须在电力网络符合简化要求情况下才能运用。相比而言,牛-拉法没有限制。
三、题目解析(题目电气接线图,题目的给定条件,题目的矩阵计算等)
3.1题目接线图与给定条件
发电厂F母线Ⅱ上所连发电机发出给定功率40+j30MVA,其余功率由母线Ⅰ所连发电机供给。连接母线Ⅰ、Ⅱ的联络变压器容量为60MVA,R_T=3Ω,X_T=110Ω;线路末端降压变压器总容量为240MVA,R_T=0.8Ω,X_T=23Ω;220kV线路,R_l=5.9Ω,X_l=31.5Ω;110kV线路,xb段,R_l=65Ω,X_l=100Ω;bⅡ段,R_l=65Ω,X_l=100Ω。所有阻抗均按线路额定电压的比值归算至220kV侧。
图3.1 网络接线图
依据题中给出的阻抗数据,我们可以将网络接线图改绘为图2 以阻抗表示的等值电路,并将相关线路的阻抗值标注在图上,需要注意的是,由于电压等级的不同,我们需要进行电阻的归算;节点导纳矩阵的形成还需考虑对地支路对自阻抗、互阻抗的影响。
3.2节点导纳矩阵的形成
以阻抗表达的等值电路如下:
图3.2 以阻抗表示的等值电路
导纳的计算
y_12 = 1/z_12 = 1/(5.9+j31.5) = 0.005745-j0.030670 (S)
y_23 = 1/z_23 = 1/(0.8+j23) = 0.001510-j0.043426 (S)
y_34 = 1/z_34 = 1/(65+j100) = 0.004569-j0.007030 (S)
y_45 = 1/z_45 = 1/(65+j100) = 0.004569-j0.007030 (S)
y_51 = 1/z_51 = 1/(3+j110) = 0.000248-j0.009084 (S)
变压器的修正
k_(1*)=(U_ⅡN U_Ⅰ)/(U_ⅠN U_Ⅱ ) = (110×231)/(220×110) = 1.050000
k_(2*)=(U_ⅡN U_Ⅰ)/(U_ⅠN U_Ⅱ ) = (110×231)/(220×121) = 0.954545
由此可得以导纳和理想变压器表示的等值线路如下:
图3.3 以导纳和理想变压器表示的等值网络
由于变压器变比不匹配,事实上无法按照实际变比归算网络参数[3]。可选用变压器Π型等值电路,它的优点是不必进行参数和变量的归算,变压器Π型电路如下:
将变压器改为Π型后等值电路如下:
图3.4 变压器以Π型等值电路表示时的等值网络
此时节点导纳参数如下:
y_10 = Y_T ((1-k_(1*)))/(k_(1*)^2 ) = -0.000011+j0.000412
y_50 = Y_T ((k_(1*)-1))/k_(1*) =0.000012-j0.000433
y_15 = Y_T/k_(1*) = 0.000236-j0.008651
y_20 = Y_T (1ⓜ┤-ⓜk_(2*) )/(k_(2*)^2 ) = 0.000075-j0.002166
y_30 = Y_T (k_(2*)ⓜ┤-ⓜ1)/k_(2*) = -0.000072+j0.002068
y_23 = Y_T/k_(2*) = 0.001582-j0.045494
由此,节点导纳矩阵各元素可求取如下:
Y_11 = y_10+y_12+y_15 = 0.005970-j0.038909
Y_12 = Y_21 = -y_12 = 0.005745+j0.030670
Y_15 = Y_51 = -y_15 = -0.000236+j0.008651
以此类推,形成节点导纳矩阵如下:
Y_B 0.005967-j0.038909 -0.005745+j0.03067 0 0 -0.000236+j0.008651
-0.005745+j0.03067 0.007402-j0.07833 -0.001582+j0.045494 0 0
0 -0.001582+j0.045494 0.006079-j0.050456 -0.004569+j0.00703 0
0 0 -0.004569+j0.00703 0.009138-j0.01406 -0.004569+j0.00703
-0.000236+j0.008651 0 0 -0.004569+j0.00703 0.004817-j0.016114
节点导纳矩阵有如下特点:
①节点导纳矩阵是方阵,它的阶数等于网络中除参考节点外的节点数n。
②节点导纳矩阵是稀疏矩阵;由于网络的互易特性,一般情况下该矩阵为对称矩阵
③节点导纳矩阵的对角元元素等于该节点所连接导纳的总和。
④节点导纳矩阵的非对角元等于连接节点 支路导纳的负值。
注:可利用编程实现节点导纳矩阵的求解;这一部分为简单网络人工求解提供思路。
3.3牛顿-拉夫逊法原理
由于本题节点导纳矩阵具有明显的对称性、稀疏性、初值确定等特点,采用牛顿-拉夫逊法求解较为简便;
牛顿-拉夫逊法是常用的解非线性方程组的方法,也是当前广泛采用的计算潮流的方法。下面简述牛顿拉夫逊法原理:
设有非线性方程组
(3-1)
其近似解为 ,设近似解与精确解分别相差 ,则有如下关系成立
(3-2)
上式均可按照泰勒级数展开。以第一式为例:
(3-3)
由于近似解 与精确解相差不大,故而可以略去 的高次方,从而麦克劳林余式 也可略去,将方程组改写为矩阵方程,整理如下:
(3-4)
上式简写为
(3-5)
式中 称为雅可比矩阵; 为由 组成的列向量; 称为不平衡量的列向量。
将 代入,可得 中的各元素。然后解线性方程组,求得 ,从而得到第一次迭代后的新值 ;
再将求得的 代入,可求得 中各元素的新值。求解下一个线性方程组得 ,从而得到第二次迭代后的新值 ;
以此循环,最终得到的 已无限接近精确解,迭代退出的条件也就是迭代收敛条件满足 。显然,由于泰勒展开略去了高次项,这意味着迭代收敛取决于 的初值接近精确解[4]。
3.4牛顿-拉夫逊法在潮流计算的应用
由电力系统稳态分析中可得网络的功率方程为:
(3-6)
令 ,令 ,从而将上式改写为:
(3-7)
将实部与虚部分列,可得:
(3-8)
建立类似(3-4)的修正方程如下:
(3-9)
式中的 分别为注入功率和节点电压平方的不平衡量,它们分别为
(3-10)
式中雅可比矩阵各个元素分别为:
(3-11)
由此循环迭代求得电压幅值、相角、线路功率、输入输出功率的最终迭代结果。
3.5PQ分解法在潮流计算的应用
1. 对于P节点(平衡节点),潮流方程为:
∑(V_i * (G_ij * cosθ_ij + B_ij * sinθ_ij)) - P_i + P_si = 0
V_i表示节点i的电压幅值;G_ij和B_ij分别为节点i和节点j之间的导纳的实部和虚部;θ_ij表示节点i和节点j之间的相角差;P_i表示节点i的实际注入功率;P_si表示节点i的静态注入功率。
2. 对于Q节点(非平衡节点),潮流方程为:
∑(V_i * (G_ij * sinθ_ij - B_ij * cosθ_ij)) - Q_i + Q_si = 0
Q_i表示节点的无功注入功率;Q_si表示节点的静态无功注入功率。
3.考虑节点的电压平衡条件,即:
V_i^2 = V_i^A + V_i^Q
V_i^A为节点i的有功注入功率引起的电压,V_i^Q为节点i的无功注入功率引起的电压。
过对以上方程进行迭代,可以逐步求解得到系统中各个节点的电压和相角,从而获得节点的潮流信息。
四、程序设计(包括程序流程图,结果分析等)
4.1牛顿拉夫逊法潮流计算
4.1.1程序流程图
结束 |
输入原始数据 |
给定初始电压幅值、相角 |
K=0 |
计算功率偏移量 |
求雅可比矩阵各元素的值 |
求解修正方程得修正量的值 |
对各节点电压进行修正 |
|
计算节点功率及全部线路功率 |
开始 |
K=K+1 |
图4.1 牛顿拉夫逊法潮流计算程序流程图
4.1.2结果分析
(1)输入
表4.1 节点参数
节点编号 |
节点电压 |
节点相角(弧度制) |
有功注入 |
无功注入 |
节点类型 |
1 |
242 |
0.00 |
0 |
0 |
3 |
2 |
220 |
0.00 |
0 |
10 |
1 |
3 |
220 |
0.00 |
-180 |
-100 |
1 |
4 |
220 |
0.00 |
-50 |
-30 |
1 |
5 |
220 |
0.00 |
40 |
30 |
1 |
表4.2 支路参数
节点i |
节点j |
线路电阻 |
电抗 |
电导 |
电纳 |
变压器变比(普通线路为零) |
1 |
2 |
5.9 |
31.5 |
0 |
0 |
0 |
3 |
2 |
0.8 |
23 |
0 |
0 |
0.954545 |
3 |
4 |
65 |
100 |
0 |
0 |
0 |
4 |
5 |
65 |
100 |
0 |
0 |
0 |
5 |
1 |
3 |
110 |
0 |
0 |
1.05 |
(2)输出
---------------------- 第1次迭代算,U最大误差为18.4675047132,角度最大误差为0.1671410078 -----------------------
表4.3 第1次迭代节点计算结果
节点计算结果: |
节点 节点电压 节点相角(角度) 节点注入功率 |
1 242.000000 0.000000 196.084682 + j 113.830126 |
2 221.547359 5.175770 0.000000 + j 10.000000 |
3 219.451852 9.576474 180.000000 + j100.000000 |
4 214.755133 7.655453 50.000000 + j 30.000000 |
5 238.467505 2.123851 40.000000 + j 30.000000 |
表4.4 第1次迭代线路计算结果
线路计算结果: |
节点i 节点j 线路功率Sij 线路功率Sji 线路损耗△Sij |
1 2 178.028659 + j 130.723039 173.114069 + j104.484128 4.914590 + j 26.238911 |
3 2 173.683224 + j108.085492 174.378392 + j 128.071568 0.695168 + j 19.986076 |
3 4 6.275278 + j 14.650836 6.618135 + j 14.123364 0.342857 + j 0.527473 |
4 5 56.882914 + j 11.564787 61.631673 + j 18.870570 4.748759 + j 7.305783 |
5 1 18.021494 + j 18.158987 18.056023 + j 16.892913 0.034529 + j 1.266074 |
---------------------- 第2次迭代算,U最大误差为6.1929384291,角度最大误差为0.0048310350 -----------------------
表4.5 第2次迭代节点计算结果
节点计算结果: |
节点 节点电压 节点相角(角度) 节点注入功率 |
1 242.000000 0.000000 201.788173 + j 151.690634 |