gcd欧几里德算法/extgcd扩展欧几里德算法以及在解不定方程中的应用

这个应该是我在noip前就应该会的东西 ,但是当时也许只是记下了代码吧 ,现在有诸多的不理解。后来借着书和几篇博客弄懂了并小证了一下,鉴于网上有些博客关于这个的写的真的不好看,所以自己来总结一下,顺带以后也能看。
顺带一提, gcd(a,b) 表示a,b的最大公约数。

欧几里德算法

辗转相除法求最大公约数问题,同可求最小公倍数。
既然是辗转相除法,自然就是%%%,%到互相整除为止。代码也很详尽简洁。

int regulargcd(int x,int y)
{
    return y==0?x:(regulargcd(y,x%y));
}

最小公倍数为两数之积除以他们的最大公约数,相信大家都能明白。

扩展欧几里德算法

我之前一直困惑的是它为什么可以求不定方程的解,后来基本明白了:
给定一个形如方程 ax+by=d ,求它的整数解。
我们知道 a,b 为整数, d 是整数,使得x,y为整数解,那么需要约掉系数中相同的部分,于是

ax+by=dgcd(a,b)|d

所以说,假设我们有 d=gcd(a,b)t ,则方程 ax+by=d 的解为 agcd(a,b)x+bgcd(a.b)y=gcd(a,b) 的t倍,那么原问题转化为求方程 agcd(a,b)x+bgcd(a.b)y=gcd(a,b) 的解了。

再推到一般,若 a,b 互质,有 ax+by=1 有解。

然后接下来我们考虑特殊解的情况:

gcd(a,b) 递归的最终结果为 gcd(k,0) ,假定方程有解,那么最终有 a1+b0=gcd(a,b) ,即 a1+b0=1 ,即 x=1 y=0 出现,这是在求 gcd 时递归形成的。若我们也这样地求解方程呢?

于是我们来找 ax+by=gcd(a,b) bx+(a%b)y=gcd(b,a%b) 的关系,由于 a%b=a(a/b)b (整数除法) 所以代入有

ay+b(xa/by)=gcd(a,b)=gcd(b,a%b)

于是原方程解为 x=y,y=x(a/b)y
这样我们就能递归地计算方程的解了。

int extgcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    else
    {
        int ans;
        ans=extgcd(b,a%b,x,y);
        int tmp=x;
        x=y;
        y=tmp-(a/b)*y;
        return ans;
    }
}

不定方程不是有很多解吗?是的,这只是最小解。设最小解为 x0,y0 ,它的所有解为 x=x0+bgcd(a,b) y=y0+agcd(a,b) 。(自己带到方程里展开就有恒等式,这里不证了)当 gcd(a,b)=1 时,有 x=x0+b , y=y0+a

    while(x<=0)
    {
        x+=(b/res);
    }
    printf("%d\n",x);

例题:zoj3609求逆元
方法同上,AC代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
//zoj3609 AC
using namespace std;

int extgcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    else
    {
        int ans;
        ans=extgcd(b,a%b,x,y);
        int tmp=x;
        x=y;
        y=tmp-(a/b)*y;
        return ans;
    }
}

int regulargcd(int x,int y)
{
    return y==0?x:(regulargcd(y,x%y));
}

int main()
{
    int a,b;
    int cas;
    scanf("%d",&cas);
    for(int z=0;z<cas;z++)
    {
        scanf("%d%d",&a,&b);
        int x,y;
        if(regulargcd(a,b)==1)
        {
            int res=extgcd(a,b,x,y);
            if(x>0)
            {
                printf("%d\n",x);
            }
            else
            {
                while(x<=0)
                {
                    x+=(b/res);
                }
                printf("%d\n",x);
            }
        }
        else
        {
            printf("Not Exist\n");
        }
    }
    return 0;
}

关于逆元,请移步逆元-wiki
谢谢看到这里

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值