欧几里得算法与不定方程

本文主要介绍数论中的欧几里得算法,线性方程及它们之间的关系。本文主要参考了《数论概论》,因此将本文当成这本书的读书笔记也未尝不可。

(本文正被完善中……)


欧几里得算法


问题:求60和22的最大公约数(两个数的最大公约数a, b是能够整除它们的最大数,记为gcd(a, b))。


因为这两个数比较小,所以我们完全可以通过肉眼观察出其最大公约数: 2 。那么对于( 225,120 )这一组数呢?我们可以分解两个数的因子:

225=32×52

120=23×3×5

然后求出所有数的约数( a 的约数 divisor(a) 表示能够整除 a 的数):

divisor(225)={1,3,5,9,15,25,45,75,225}

divisor(120)={ 1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}

它们的公约数

commonDivisor(225,120)={ 1,3,5,15}

其中最大的 15 就是它们的最大公约数(根据最大公约数的定义)。大功告成,总算让人松了一口气。按照这个方法,不论来什么样的一组数,我们都可以轻松的求它们的最大公约数了。等等,真的是这样吗?那么来看看这一组数:

(1160718174,316258250)

我的天,这题谁爱算谁算吧(溜~)。

下面介绍欧几里得算法,只要掌握了这种算法,就可以用极其快的速度算出两个数的最大公约数,就算是上面那两个天文数字也 OK 。不仅如此,欧几里得算法还很容易通过编程实现,那么就可以利用计算机的计算能力迅速的解决大多数(指的是有机会碰上的)最大公约数的问题,其代码量只有三行。

在介绍算法的具体过程之前,我打算先用文字描述一下这个算法,即使无法很好的说清楚这个算法,也让先有一个大体的概念。

欧几里得算法:可以用以下方法求a, b的最大公约数gcd(a, b)

  1. 计算 r=amodb ,然后令 a=b,b=r
  2. 重复步骤 1 ,直到 r=0 ,此时 b 就是答案。

下面我们将利用欧几里得算法计算 gcd(1160718174,316258250)

1160718174=3  ×316258250+211943424

316258250  =1  ×211943424+104314826

211943424  =2  ×104314826+3313772

104314826  =31

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值