收藏、学习一气呵成,2019年机器之心干货教程都在这里了

机器之心整理

参与:张倩、蛋酱

从 2016 年起,机器之心每年都会盘点全年的精华教程。去年就有小伙伴留言说要在 2019 年上半年把 2018 年的教程合集「啃下来」。现在都 2020 了,不知道这位朋友啃完没有?要是 flag 没倒,不妨再来一份?

与往年类似,今年的盘点分为入门解惑、优质教材及课程、语言、工具、GitHub 项目、经验分享几大板块。无论你是刚迈入 AI 领域的萌新,还是工作多年的数据分析师、炼丹师、码农,这份合集都能帮到你。

如果这些都学完了还没尽兴,可以跳到文末链接找出往年教程合集。

入门解惑

去年,教育部公布了 35 所新增 AI 本科高校名单,为想学 AI 的同学提供了更多选择。对于这部分刚迈入 AI 领域的萌新,我们提供了一系列完备的学习路线和入门教程:

当然,在搞定 AI 之前,你必须要先搞定数学:

接下来是一些简短而全面的教程,「一文读懂」基本概念:

相比于文字,图解教程能够帮助你更直观、快速地领会知识的精髓:

优质教材、课程

如果你去购物网站、在线课程网站直接搜索,会发现与「人工智能」相关的图书资料有上万种,课程也有数百种。在学习资料异常丰富的今天,挑出优质的教材、课程也成了一大难题。不过不用担心,在机器之心编辑部和读者的共同努力下,今年的优质参考书、课程都已经筛选好了:

开卷有益

2019 年,周志华等多位老师联合撰写的《演化学习:理论与算法进展》问世;李航老师的《统计学习方法》第二版上线;李沐老师的《动手学深度学习》有了 TF 2.0、PyTorch 版本;贝叶斯之父 Judea Pearl 的《The Book of Why》也有了中文版本……要获取这些优质教材的新动向,关注机器之心就够了:

站在巨人的肩膀上

除了以上经典教材,还有些优质课程可以参考。这些课程来自麻省理工学院、斯坦福大学、多伦多大学、哥伦比亚大学等多所国内外知名高校,授课者包括 Bengio、吴恩达、李宏毅等名师:

温故而知新

教程、课程看完一遍很容易忘记,这时候就需要笔记来帮忙了。在过去的一年中,我们发现了以下几份优秀的笔记项目,可以作为学习的辅助材料。

语言

去年 11 月,地产大佬潘石屹突然宣布开始学 Python,众读者纷纷惊呼:居然不是广告?从这串长长的列表来看,你大概能够体会到 Python 有多火了,毕竟它也是最有益于保持头发浓密的语言之一。在这部分,我们列举了 Python 的官方文档、使用技巧、实用工具包等有用信息(谁帮忙 @ 一下潘总?)。

工具及技巧

古人说过,「工欲善其事,必先利其器」。工具的好坏及使用技巧与我们的学习效果息息相关。要列举 AI 学习中用到的重要工具,首先要从深度学习框架说起。

深度学习框架

2019 年,ML 框架之争中只剩两个实力玩家:PyTorch 和 TensorFlow。研究者大批涌向 PyTorch,而业界的首选仍然是 TensorFlow。因此,这部分着重筛选出这两个框架的相关教程。

1. TensorFlow

2.PyTorch

其他工具

1. 神奇的编辑器

2. 代码补全利器

3.Git

4. 笔记本

5. 其他

技巧

这里还有一些小技巧,可以帮助你解决一些「令人头秃」的问题:

GitHub 年度精选

作为全球最大的同性交友网站,GitHub 上几乎能找到你想要的一切。「我在 GitHub 上北大,他在 Pornhub 考研究生」这句话不是说说而已(忽略后半句):

同时,GitHub 上还有很多神奇项目,让我们流连忘返,唱、跳、Rap、篮球,应有尽有:

一个靠谱的数据集会让模型训练工作事半功倍,这一年里,我们分享过这些优质 GitHub 数据集:

经验分享,「深度好文」

最后,我们总结了一系列经验分享,涵盖读博、面试、职场经验等多个方面。低头赶路的时候,也要抬头看看远方。

读博那点事儿

备战春招

职业生涯回顾与行业展望

码农的自我修养

参赛、参会经验贴

往年教程盘点

过去几年的干货都在这里了,flag 是不是也该立起来了?

明年想上墙的朋友欢迎留言。

AI学习路线和优质资源,在后台回复"AI"获取

发布了255 篇原创文章 · 获赞 360 · 访问量 32万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览