SVM图像分类我们从理论部分和代码实现两部分进行讲解,注重基本概念和核心算法的理解。
一、图像分类
图像分类属于图像识别的部分,图像分类是指利用计算机对图像进行定量分析,把图像中的每个像元或区域划归为若干个类别中的一种,以代替人工视觉判读的技术。从目视角度来说对图像进行预处理如提高对比度、增加视觉维数、进行空间滤波或变换等处理使人们能够凭借知识和经验,根据图像亮度、色调、位置、纹理和结构等特征,准确地对图像景物类型或目标做出正确的判读和解释。另外一个很重要的概念就是特征提取,它是指使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。
二、SVM图像分类的基本流程
1.获取数据
图像可以是通过摄像机或视频头采样获得的数据,也可以是一般的统计数据集,其中的数据以向量或