【OpenCV学习笔记 015】SVM图像分类

47 篇文章 37 订阅 ¥9.90 ¥99.00
25 篇文章 9 订阅 ¥9.90 ¥99.00
本文详细介绍了使用OpenCV进行SVM图像分类的过程,包括图像分类的基本概念、SVM图像分类的基本流程和实验部分。重点讨论了特征提取(如SURF算法)、BOW模型构建以及SVM分类器的设计和应用。实验中,SVM用于识别二维码、logo和文字。
摘要由CSDN通过智能技术生成

SVM图像分类我们从理论部分和代码实现两部分进行讲解,注重基本概念和核心算法的理解。

一、图像分类

图像分类属于图像识别的部分,图像分类是指利用计算机对图像进行定量分析,把图像中的每个像元或区域划归为若干个类别中的一种,以代替人工视觉判读的技术。从目视角度来说对图像进行预处理如提高对比度、增加视觉维数、进行空间滤波或变换等处理使人们能够凭借知识和经验,根据图像亮度、色调、位置、纹理和结构等特征,准确地对图像景物类型或目标做出正确的判读和解释。另外一个很重要的概念就是特征提取,它是指使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。

二、SVM图像分类的基本流程

1.获取数据

图像可以是通过摄像机或视频头采样获得的数据,也可以是一般的统计数据集,其中的数据以向量或

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

余莫星辰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值