YOLOv8 图像分割

该文详细介绍了如何在配备CUDA11.7和PyTorch1.13.0的环境中安装YOLOv8,并通过验证步骤确保安装成功。文章还涵盖了自定义数据集的准备,模型训练和推理过程,以及对训练和推理脚本的修改方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、背景

二、环境配置

官网:Previous PyTorch Versions | PyTorch

cuda == 11.7
pytorch == 1.13.0
torchvision == 0.14.0
pytorch-cuda == 11.7

三、安装yolov8

官网:GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > CoreML > TFLite

  • # 安装yolov8的依赖

cd ultralytics
pip install -r requirements.txt
pip install onnx
pip install ultralytics

  • 验证是否安装成功

# 可以先执行一下 yolo help ,看一下yolo有哪些命令

yolo help

# 通过yolov8自带的图片,测试一下安装是否成功:此时会自动在官网上下载预训练模型

yolo detect predict model=yolov8n.pt source="ultralytics/assets/bus.jpg" 

四、准备自己的项目

1、准备datasets数据集(coco类型、生成txt格式的label标签、分成train和val目录);

2、拷贝一份 yolov8/ultralytics/ultralytics/datasets/coco128-seg.yaml 并按照自己项目的需求进行修改;

3、训练模型:自定义修改 yolov8/ultralytics/ultralytics/yolo/v8/segment/train.py 文件

4、推理模型:自定义修改 yolov8/ultralytics/ultralytics/yolo/v8/segment/predict.py 文件

五、推理结果的解析

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值