亲测解决self.transform is not exist

这是由于torchvision版本过低导致,解决方法是更新torchvision最新版本。

pip uninstall torchvision
pip install torchvision

笔记

upgrade torchvision to the latest。

### PyTorch U-Net 训练时 `CarvanaDataset` 数据加载中的常见错误及其解决方案 在使用 PyTorch 实现 U-Net 并训练模型的过程中,可能会遇到数据集加载相关的错误。以下是针对 `listdir` 和 `splitext` 的一些可能原因及解决方法。 #### 错误分析 1. **路径问题**: 如果指定的目录不存在或者路径不正确,则会引发异常。 2. **文件过滤不当**: 使用 `os.listdir()` 列举文件夹下的所有文件时,如果没有对扩展名进行筛选,可能导致读取到非图像文件而报错。 3. **日志记录缺失**: 当程序运行过程中出现问题时,缺乏详细的日志信息会使调试变得困难。 4. **并行处理冲突**: 在多线程或多进程环境中,如果未正确管理资源访问权限,也可能导致意外行为。 #### 解决方案 为了防止上述情况发生,可以采取以下措施: - 确认输入输出路径的有效性,在脚本开头加入简单的验证逻辑[^1]: ```python input_dir = 'path/to/input' if not os.path.exists(input_dir): raise FileNotFoundError(f"The specified directory does not exist: {input_dir}") ``` - 对于每张待预的图片,增加对其格式的支持判断条件[^3]: ```python for filename in os.listdir(input_dir): if not any(filename.lower().endswith(ext) for ext in ['.png', '.jpg', '.jpeg']): continue ``` - 增强异常捕获机制,以便更好地定位具体哪个环节出了差错: ```python try: with open(img_path, 'rb') as file_handler: img = Image.open(file_handler).convert('RGB') except Exception as e: logging.error(f"Failed to load image at path '{img_path}'. Error message was:\n{str(e)}") continue ``` - 考虑采用更现代化的数据预处理方式来替代原始实现[^2],比如利用 torchvision 提供的功能简化流程: ```python from torchvision import transforms transform_pipeline = transforms.Compose([ transforms.Resize((Config.Image_Height, Config.Image_Width)), transforms.ToTensor(), ]) class CustomImageDataset(Dataset): def __init__(self, root_dir, transform=None): self.root_dir = root_dir self.transform = transform self.images = [f for f in os.listdir(root_dir) if isfile(join(root_dir, f))] def __len__(self): return len(self.images) def __getitem__(self, idx): img_name = join(self.root_dir, self.images[idx]) image = Image.open(img_name).convert("RGB") if self.transform: image = self.transform(image) sample = {'image': image} return sample ``` 通过以上改进不仅能够提升代码可维护性和鲁棒性,还便于后续功能拓展如支持更多种类的数据源等操作。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值