金融数学专题3 基于复利的计算

一、一些基本参数

当利息力\delta为常数时,可以通过

\exp \left[ -\int_s^{s+t} \delta(r) \, dr \right] = \exp \left( -\int_s^{s+t} \delta \, dr \right) = \exp(-\delta t)

进行现值(present value)的相关计算。

此时规定:  v=e^{-\delta} \\ 1-d=e^{-\delta}

所以,如果要在  t=1 时得到 1 的回报,投资者需要在 t=0 时支出 1-d。 我们将该条件下的参数d称为折现率(rate of discount)。

注意:参数\delta\ v\ i\ d的相互转化

\begin{array}{l} \delta = \ln(1 + i) \\ v = (1 + i)^{-1} \\ d = 1 - (1 + i)^{-1} = \frac{i}{1 + i} \\ d = i v \end{array}

\deltavid
\deltae^{\delta} - 1e^{-\delta}1-e^{-\delta}
vln(1+i)\frac {1}{1+i}iv
i-lnv\frac {1}{v}-11-v
d-ln(1-d)\frac {1}{1-d}-11-d

可以通过泰勒展开式进一步简化ln函数,进行大致估算。

例:证明对于一个在t=0到t=1的支付速率为\delta的连续现金流,其现值为d。

二、交易方程式和参数yield

在进行现金流的计算时,复杂现金流的交易可以等价地视作在t=0时刻进行现值大小的交易,所以对于多个现金流,通常计算每个现金流的现值,通过比较t=0时的各现金流的值推断交易的盈与亏。

1.离散现金流

     若两现金流的现值相等,则\sum_{r=1}^{n} a_{t_{r}} e^{-\delta t_{r}} = \sum_{r=1}^{n} b_{t_{r}} e^{-\delta t_{r}},即\sum_{r=1}^{n} c_{t_{r}} e^{-\delta t_{r}} =0(这里的c代表净现金流:收入-支出)

公式\sum_{r=1}^{n} c_{t_{r}} e^{-\delta t_{r}} =0被称作交易方程式(equation of value for the force of interest),代表利息力为特定值\delta时,净现金流为0。

同理,交易方程式也可写作\sum_{r=1}^{n} c_{t_{r}} (1+i)^{-t_{r}} =0,该形式被称作yield equation。

yield equation:离散状态下利用利率构建的present value=0 的方程。!!

2.连续现金流

相似地可以得到交易方程式为\int_{0}^{\infty} \rho(t) e^{-\delta t} \, dt = 0

3.一般情况

对于一般情况,交易方程式为\sum_{r=1}^{n} c_{t_{r}} e^{-\delta t_{r}}+\int_{0}^{\infty} \rho(t) e^{-\delta t} \, dt =0。(注意:也可以将t=0替换为特定的t=t_{0})该方程有且仅有一个根\delta_{0}时,相应的利率叫做yield per unit time。(可能会要用二分法求解)

(yield:present value=0对应的唯一利率!)

我们进而利用yield进行分析,当i小于yield值时,投资人盈利;反之则亏本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值