一、一些基本参数
当利息力为常数时,可以通过
进行现值(present value)的相关计算。
此时规定:
所以,如果要在 t=1 时得到 1 的回报,投资者需要在 t=0 时支出 1-d。 我们将该条件下的参数d称为折现率(rate of discount)。
注意:参数的相互转化
v | i | d | ||
v | ||||
i | ||||
d |
可以通过泰勒展开式进一步简化ln函数,进行大致估算。
例:证明对于一个在t=0到t=1的支付速率为的连续现金流,其现值为d。
二、交易方程式和参数yield
在进行现金流的计算时,复杂现金流的交易可以等价地视作在t=0时刻进行现值大小的交易,所以对于多个现金流,通常计算每个现金流的现值,通过比较t=0时的各现金流的值推断交易的盈与亏。
1.离散现金流
若两现金流的现值相等,则,即
(这里的c代表净现金流:收入-支出)
公式被称作交易方程式(equation of value for the force of interest),代表利息力为特定值
时,净现金流为0。
同理,交易方程式也可写作,该形式被称作yield equation。
yield equation:离散状态下利用利率构建的present value=0 的方程。!!
2.连续现金流
相似地可以得到交易方程式为。
3.一般情况
对于一般情况,交易方程式为。(注意:也可以将t=0替换为特定的
)该方程有且仅有一个根
时,相应的利率叫做yield per unit time。(可能会要用二分法求解)
(yield:present value=0对应的唯一利率!)
我们进而利用yield进行分析,当i小于yield值时,投资人盈利;反之则亏本。