使用silix做序列聚类

本文将详细介绍如何利用Silix工具进行序列聚类分析,通过实例演示操作步骤,帮助读者掌握这一生物信息学技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近需要做基因聚类,查找一些文献后多使用clans、mcl、orthomcl等。但是以上多针对蛋白,于是又继续搜索后发现一个不错的软件,名叫siLix,核算、蛋白均可使用。


以下是安装和使用过程 
文献:http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-116
软件:ftp://pbil.univ-lyon1.fr/pub/logiciel/silix/
依赖:Boost、MPI


若想使用并行,需要安装MPI;若想最大化性能,需要安装Boost。


软件版本 silix-1.2.10.tar.gz
系统版本 Ubuntu 14.04.4 LTS
安装:
1 安装Boost:
>$ sudo apt-get install libboost-all-dev
2 安装软件:
>$ tar xf silix-1.2.10.tar.gz
>$ cd silix-1.2.10
>$ ./configure --precix==/your/path/to/silix --enable-verbose  --
### 时间序列聚类概述 时间序列聚类属于无监督学习的一种应用形式,其目的是识别并分组具有相似模式的时间序列数据[^4]。这类方法能够帮助揭示隐藏于动态数据中的结构化信息。 ### 方法分类 针对时间序列特性设计的聚类方案主要分为两大类别: - **调整现有算法适应性**:对传统聚类模型(如K-means)出改进以便更好地应对时间维度带来的挑战; - **转换为静态表征再聚类**:先通过特定手段将原始序列映射成固定长度向量或其他形式的描述符,之后利用标准聚类工具完成任务[^1]。 ### 特定方法:k-Shape k-Shape 是一种专注于捕捉时间序列形态特征而非绝对数值大小差异的技术。该方法引入了一种新的距离度量方式来衡量两个序列间的相异性程度,并基于此构建迭代优化过程以求解最优簇划分[^2]。 ### 实现案例 下面给出一段Python代码片段用于展示如何借助`tslearn`库执行 k-Shape 聚类操作: ```python from tslearn.clustering import KShape import numpy as np # 假设 X 代表输入的时间序列矩阵 (n_samples, n_timestamps) X = ... ks = KShape(n_clusters=3, verbose=True, random_state=0).fit(X) labels = ks.labels_ cluster_centers = ks.cluster_centers_ print(f"Labels assigned to each sample:\n{labels}") ``` 上述脚本首先导入必要的模块,接着定义了一个含有待分析样本的数据集 `X` 。随后创建了 `KShape` 类实例对象 `ks` 并调用了 fit() 函数来进行实际计算;最后输出了各条记录所属类别标签以及各类别的中心位置。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值