1.设R为实数集,映射f:R→R,f(x)= x 2 x^2 x2,则f是().
- 既不是单射,也不是满射。
2.R∘R=R是集合A上的关系R为传递的充分必要条件。✘
- 是充分条件。因为可以没有传递基础。
3.{a}⊆{{a}} ✘
4.若n个顶点的简单无向图G的边数e=n−1,则G一定是树. ✘
- 可以不连通,故不是树
若无向连通图G中有n个结点,n-1条边,则G为树 ✔
5.在n阶图G中,若从结点u到v(u≠v)存在通路,则从u到v存在长度小于或等于n−1的通路. ✔
6.设 S={0,1},*为普通乘法,则< S , * >是?
- 只是独异点,但不是群
7.所有非同构的 5 阶根树有?
- 9棵
所有非同构的 4 阶根树有 棵.
- 4棵
9.高为 h 的正则 2 叉树至少有____片树叶.
- h+1
10.上确界
⇔
\Leftrightarrow
⇔ 最小上界
下确界
⇔
\Leftrightarrow
⇔ 最大下界
11.设 A={1 ,2 ,3 },则 A 上有( )个二元关系
- 2 3 2 2^{3^2} 232
12.循环群都是阿贝尔群,但阿贝尔群不一定都是循环群。
13.一个无向图有生成树的充分必要条件是它是连通图
14.集合{0}的幂集是?
- {Φ,{0}} 注意:幂集也是集合。
15.强连通图一定是单向连通图,单向连通图一定是弱连通图。反之不成立。
16.集合 A A A = {1,2,3}。则集合 A A A 上的等价关系有几个?
- 5个
17.设 S={a,b},则 S 上的关系 R={<a,b>,<b,c>,<a,c>}是传递的。 ✘
18.公式 A A A = ∃ \exist ∃ x (F(x) → \rightarrow → G (x,y) ) 的解释 I I I:个体域 D = N ,F(x) : x > 3 , G(x) : x = y 则 A A A 的真值为?
- 注意:这里 ∃ \exist ∃ x的作用域不止是前件,所以不能直接代。这道题的意思是存在x使得若 x > 3 则 x = y成立。因为没有y的值,所以这道题的真值无法确定。
19.设
S
S
S = {1,2,3} ,定义
S
S
S x
S
S
S 上的等价关系
R
R
R = {<<a,b> , <c,d>>|a + d = b + c} , 则
R
R
R 中的等价类的个数为?
20.循环群
G
G
G = < a > 的子群仍是循环群
若
G
G
G是无限循环群,则
G
G
G的子群除了{e} 以为都是无限循环群。
解析:
x和-x是自同构。
因为2x不满足双射,x+5不满足自同态:f(x+y) = f(x) + f(y) 。
解析:D
注意:
第四个图也是简单图。
23.A={a,b},则 A 的幂集 P(A)到自身的双射有____个
解析:24
幂集有4个,4x3x2=24