命题逻辑的等值演算
一、等值式
1.基本理论
若等价式A↔B是重言式,则称A与B等值(真值表的结果一致),记作A<=>B,并称A<=>B是等值式。(注意等值和等价式符号的表达区别)
例如:用真值表判断下列各组公式是否等值:
(1) p→(q→r) 与 (p∧q) →r
所以 p→(q→r) <=> (p∧q) →r
2. 基本等值式
(1)交换律:A ∨ B ⇔ B ∨ A;
A ∧ B ⇔ B ∧ A。
(2)结合律:(A ∨ B) ∨ C ⇔ A ∨ (B ∨ C);
(A ∧ B) ∧ C ⇔ A ∧ (B ∧ C)。
(3)分配律:A ∨ (B ∧ C) ⇔ (A ∨ B) ∧ (A ∨ C);
A ∧ (B ∨ C) ⇔ (A ∧ B) ∨ (A ∧ C);
(4)双重否定律:A ⇔ ¬(¬A);
(5)等幂律:A ⇔ A ∨ A;
A ⇔ A ∧ A。
(6)吸收律:A ∨ (A ∧ B) ⇔ A;
A ∧ (A ∨ B) ⇔ A。
(7)零律:A ∨ 1 ⇔ 1;
A ∧ 0 ⇔ 0。
(8)同一律:A ∨ 0 ⇔ A;
A ∧ 1 ⇔ A。
(9)排中律:A ∨ ¬A ⇔ 1;
(10)矛盾律:A ∧ ¬A ⇔ 0。
(11)德.摩根律:¬(A ∨ B) ⇔ ¬A ∧ ¬B;
¬(A ∧ B) ⇔ ¬A ∨ ¬B。
(12)蕴含等价式:A → B ⇔ ¬B → ¬A
(13)等价等值式:A ↔ B ⇔ (A → B) ∧ (B → A)
(14)假言易位:A → B ⇔ ¬B → ¬A
(15)归谬论:(A → B) ∧ ( A → ¬B) ⇔ ¬A
3.等值演算
等值演算:由已知的等值式推演出新的等值式的过程。
例如:
▶
\blacktriangleright
▶证明两个公式等值
证明 (p→q)→r <=> (p∨r )∧(¬q∨r)
证: (p→q)→r
<=> (¬p∨q)→r (蕴涵等值式,置换规则)
<=> ¬(¬p∨q)∨r (蕴涵等值式,置换规则)
<=> (p∧¬q)∨r (德摩根律,置换规则)
<=> (p∨r )∧(¬q∨r) (分配律,置换规则)
▶
\blacktriangleright
▶用等值演算法判断下列公式的类型
(1) q∧¬(p→q)
(2) (p→q) ↔(¬q→¬p)
(3) ((p∧q)∨(p∧¬q))∧r)
<=> q∧¬(¬p∨q) (蕴涵等值式)
<=> q∧(p∧¬q) (德摩根律)
<=> p∧(q∧¬q) (交换律,结合律)
<=> p∧0 (矛盾律)
<=> 0 (零律)
矛盾式
(2) (p→q) ↔(¬q→¬p)
<=> (¬p∨q)↔(q∨¬p) (蕴涵等值式)
<=> (¬p∨q)↔(¬p∨q) (交换律)
<=> 1
重言式
(3) ((p∧q)∨(p∧¬q))∧r)
<=> (p∧(q∨¬q))∧r (分配律)
<=> p∧1∧r (排中律)
<=> p∧r (同一律)
二、析取范式与合取范式
1.基本理论
(1) 文字:命题变项及其否定的总称
(2) 简单析取式:有限个文字构成的析取式
p, ¬q, p∨¬q, p∨q∨r
(3) 简单合取式:有限个文字构成的合取式
p, ¬q, p∧¬q, p∧q∧r,
(4) 析取范式:由有限个简单合取式组成的析取式
p, ¬p∧q, p∨¬q, (p∧¬q)∨(¬p∧q∧¬r)∨(q∧r)
(5) 合取范式:由有限个简单析取式组成的合取式
p, p∨¬q, ¬p∧q, (p∨q∧¬p)∧(p∨¬q∨¬r)
(6) 范式:析取范式与合取范式的总称
说明:
单个文字既是简单析取式,又是简单合取式
形如 p∧¬q∧r, ¬p∨q∨¬r 的公式既是析取范式,又是合取范式
2.范式的性质
定理2.1 (1) 一个简单析取式是重言式当且仅当它同时含有某个命题变项和它的否定式.
例如:p∨¬p,(r∧p∧q)∨¬(r∧p∧q) 为永真式(重言式),结果为1
(2) 一个简单合取式是矛盾式当且仅当它同时含有某个命题变项和它的否定式.
例如: ¬p∧p, (p∨q∨p)∧(¬p∨¬q∨¬r) 为永假式(矛盾式),结果为0
定理2.2 (1) 一个析取范式是矛盾式当且仅当它每个简单合取式都是矛盾式.
例如:¬p∨¬q,(¬p∧¬q)∨(¬r∧¬p)成真赋值为永假式(矛盾式),结果为0
(2) 一个合取范式是重言式当且仅当它的每个简单析取式都是重言式.
例如: p∧p, (p∨q)∧(q∨¬r) 成真赋值为永真式(重言式),结果为1
定理2.3(范式存在定理)
任何命题公式都存在与之等值的析取范式与合取范式
公式A的析取(合取)范式-与A等值的析取(合取)范式
3.求公式A的范式的步骤
(1) 消去A中的→, ↔(若存在)
A→B<=>¬A∨B
A↔B<=>(¬A∨B)∧(A∨¬B)
(2) 否定联结词¬的内移或消去
¬ ¬A<=> A
¬(A∨B)<=> ¬A∧¬B
¬(A∧B)<=> ¬A∨¬B
(3) 使用分配律
A∨(B∧C)<=> (A∨B)∧(A∨C) 求合取范式
A∧(B∨C)<=> (A∧B)∨(A∧C) 求析取范式
公式范式的不足——不惟一(即是析取范式也是合取范式)
如求下列公式的析取范式与合取范式
(1) (p→¬q)∨¬r
(2) (p→¬q)→r
解 (1) (p→¬q)∨¬r
<=> (¬p∨¬q)∨¬r (消去→)
<=> ¬p∨¬q∨¬r (结合律)
最后结果既是析取范式(由3个简单合取式组成的析取式),又
是合取范式(由一个简单析取式组成的合取式)
(2) (p→¬q)→r
<=> (¬p∨¬q)→r (消去第一个→)
<=> ¬(¬p∨¬q)∨r (消去第二个→)
<=> (p∧q)∨r (否定号内移——德摩根律) 析取范式
<=> (p∨r)∧(q∨r) (∨对∧分配律) 合取范式
4.极小项与极大项
定义2.4 在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i个文字出现在左起第i位上(1<=i<=n),称这
样的简单合取式(简单析取式)为极小项(极大项).
说明:
n个命题变项有2n个极小项和2n个极大项
2n个极小项(极大项)均互不等值
用mi表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用Mi表示第i个极大项,其中i是该极大项成假赋值的十进制表示. mi(Mi)称为极小项(极大项)的名称.
例如:由两个命题变项 p, q 形成的极小项与极大项
5。主析取范式与主合取范式
主析取范式——由极小项构成的析取范式
主合取范式——由极大项构成的合取范式
例如,n=3, 命题变项为 p, q, r 时,
(¬p∧¬q∧r)∨(¬p∧q∧r) <=> m1∨m3 ——主析取范式
(p∨q∨¬r)∧(¬p∨¬q∨¬r) <=> M1∨M7——主合取范式
公式A的主析取(合取)范式——与A 等值的主析取(合取)范式
定理2.5 (主范式的存在惟一定理)
任何命题公式都存在与之等值的主析取范式和主合取范式,
并且是惟一的
求公式主范式的步骤:
求公式主析取范式的步骤:
设公式A含命题变项p1,p2,…,pn
(1) 求A的析取范式A’=B1∨ B2∨ … ∨ Bs , 其中Bj是简单合取
式 j=1,2, … ,s
(2) 若某个Bj既不含pi, 又不含¬pi, 则将Bj展开成
Bj <=> Bj∧(pi∨¬pi) <=> (Bj∧pi)∨(Bj∧¬ pi)
重复这个过程, 直到所有简单合取式都是长度为n的极小项为止
(3) 消去重复出现的极小项, 即用mi代替mi∧mi
(4) 将极小项按下标从小到大排列
例如:求公式 A=(p→¬q)→r的主析取范式和主合取范式
解
(
p
→
¬
q
)
→
r
\quad(p \rightarrow \neg q) \rightarrow r
(p→¬q)→r
⇔
(
p
∧
q
)
∨
r
(析取范式)
(
1
)
(
p
∧
q
)
⇔
(
p
∧
q
)
∧
(
¬
r
∨
r
)
⇔
(
p
∧
q
∧
¬
r
)
∨
(
p
∧
q
∧
r
)
⇔
m
6
∨
m
7
(
2
)
r
⇔
(
¬
p
∨
p
)
∧
(
¬
q
∨
q
)
∧
r
⇔
(
¬
p
∧
¬
q
∧
r
)
∨
(
¬
p
∧
q
∧
r
)
∨
(
p
∧
¬
q
∧
r
)
∨
(
p
∧
q
∧
r
)
⇔
m
1
∨
m
3
∨
m
5
∨
m
7
(
3
)
(2), (3)代入(1)并排序, 得
(
p
→
¬
q
)
→
r
⇔
m
1
∨
m
3
∨
m
5
∨
m
6
∨
m
7
(主析取范式)
\begin{aligned} & \Leftrightarrow(p \wedge q) \vee r (析取范式) (1)\\ &(p \wedge q) \\ & \Leftrightarrow(p \wedge q) \wedge(\neg r \vee r) \\ & \Leftrightarrow(p \wedge q \wedge \neg r) \vee(p \wedge q \wedge r) \\ & \Leftrightarrow m_6 \vee m_7 \quad(2)\\ & r \\ & \Leftrightarrow(\neg p \vee p) \wedge(\neg q \vee q) \wedge r \\ & \Leftrightarrow(\neg p \wedge \neg q \wedge r) \vee(\neg p \wedge q \wedge r) \vee(p \wedge \neg q \wedge r)\vee(p \wedge q \wedge r)\text { } \\ & \Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_7 \quad(3)\\ & \text { (2), (3)代入(1)并排序, 得 } \\ &(p \rightarrow \neg q) \rightarrow r \Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7 \quad \text { (主析取范式)}\end{aligned}
⇔(p∧q)∨r(析取范式)(1)(p∧q)⇔(p∧q)∧(¬r∨r)⇔(p∧q∧¬r)∨(p∧q∧r)⇔m6∨m7(2)r⇔(¬p∨p)∧(¬q∨q)∧r⇔(¬p∧¬q∧r)∨(¬p∧q∧r)∨(p∧¬q∧r)∨(p∧q∧r) ⇔m1∨m3∨m5∨m7(3) (2), (3)代入(1)并排序, 得 (p→¬q)→r⇔m1∨m3∨m5∨m6∨m7 (主析取范式)
( p → ¬ q ) → r ⇔ ( p ∨ r ) ∧ ( q ∨ r ) (合取范式)(4) p ∨ r ⇔ p ∨ ( q ∧ ¬ q ) ∨ r ⇔ ( p ∨ q ∨ r ) ∧ ( p ∨ ¬ q ∨ r ) ⇔ M 0 ∧ M 2 ( 5 ) q ∨ r ⇔ ( p ∧ ¬ p ) ∨ q ∨ r ⇔ ( p ∨ q ∨ r ) ∧ ( ¬ p ∨ q ∨ r ) ⇔ M 0 ∧ M 4 ( 6 ) (5) (6)代入(4) 并排序, 得 ( p → ¬ q ) → r ⇔ M 0 ∧ M 2 ∧ M 4 ( 主合取范式 ) \begin{aligned} & (p \rightarrow \neg q) \rightarrow r \\ \Leftrightarrow & (p \vee r) \wedge(q \vee r) \quad \text { (合取范式)(4) } \\ & p \vee r \\ \Leftrightarrow & p \vee(q \wedge \neg q) \vee r \\ \Leftrightarrow & (p \vee q \vee r) \wedge(p \vee \neg q \vee r) \\ \Leftrightarrow & M_0 \wedge M_2 (5) \\ & q \vee r \\ \Leftrightarrow & (p \wedge \neg p) \vee q \vee r \\ \Leftrightarrow & (p \vee q \vee r) \wedge(\neg p \vee q \vee r) \\ \Leftrightarrow & M_0 \wedge M_4 (6) \\ \text { (5) } & \text { (6)代入(4) 并排序, 得 } \\ (p \rightarrow & \neg q) \rightarrow r \Leftrightarrow M_0 \wedge M_2 \wedge M_4 (主合取范式)\end{aligned} ⇔⇔⇔⇔⇔⇔⇔ (5) (p→(p→¬q)→r(p∨r)∧(q∨r) (合取范式)(4) p∨rp∨(q∧¬q)∨r(p∨q∨r)∧(p∨¬q∨r)M0∧M2(5)q∨r(p∧¬p)∨q∨r(p∨q∨r)∧(¬p∨q∨r)M0∧M4(6) (6)代入(4) 并排序, 得 ¬q)→r⇔M0∧M2∧M4(主合取范式)