Python计算文本余弦相似度

#!/usr/bin/python3
import kashgari
from kashgari.embeddings import BERTEmbedding
import logging
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import jieba
import sys

chinese_bert_file='./data/chinese_L-12_H-768_A-12'

def cal_cosine():
    bert = BERTEmbedding(chinese_bert_file,
                            task=kashgari.CLASSIFICATION,
                            sequence_length=10)

    # call for single embed
    sen1 = input('sentence1:')
    sen2 = input('sentence2:') 

    seg_list1 = jieba.cut(sen1, cut_all=False)
    seg_list2 = jieba.cut(sen2, cut_all=False)
    
    seg_list1 = list(seg_list1)
    seg_list2 = list(seg_list2)
    embed_tensor1 = bert.embed_one(seg_list1)
    embed_tensor2 = bert.embed_one(seg_list2)

    embedding1 = np.zeros(shape=(1,3072))
    embedding2 = np.zeros(shape=(1,3072))
    
    for i in range(embed_tensor1.shape[0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值