【安装mmdetection】

本文介绍在装mmdetection的大致纪录过程,适合有安装基础的学生。联想拯救者Y7000

一、卸载上次装载的CUDA v10.0 

        (一)找到应用卸载界面,只保留NVDIA开头的这两个程序,其余含有10.0后缀的文件,和安装日期与10.0后缀文件一致的都可以删除。

        (二)来到文件夹中,一般默认安装在"C:\Program Files\NVIDIA GPU Computing Toolkit"和"C:\Program Files\NVIDIA Corporation"中,删除这两个文件,因为后续的安装也需要在这里进行同样的命名。

二、安装CUDA v10.2

        (一)看电脑能装载的最高版本cuda,拯救者Y7000的最高版本为11.1,所以装载10.2是没有问题的,装10.2是因为官网介绍中说10.2的兼容性较好。

        (三)下载CUDA,进入官网选择CUDA Toolkit Archive | NVIDIA Developer想要的版本下载。

        (四)安装CUDA,默认位置,自定义安装,取消勾选NVDIA GeForce ExperienceCUDA中将Visual Studio Intergration。

三、安装适配 cudnn

        (一)下载cudnn,进入官网cuDNN Archive | NVIDIA Developer选择想要版本进行下载。重点是for CUDA 10.2 ,得与你的CUDA版本一致。

        (二)解压缩,并把其中的三个文件直接复制到CUDA安装文件夹下

        (三)修改环境变量。找到系统环境变量中的path,

        选择“新建”,“添加”,添加没有的,一般系统会自动添加两个主要的。

        (四)验证安装。cd到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite,然后分别执行bandwidthTest.exe和deviceQuery.exe

四、安装适配的pytorch

有两个方法,一个是按照官网中的命令,一个是去软件库下载之后本地安装,两者都秉持一个逻辑,用确定的版本号语句来安装,不要直接Insatall pytorch

(一)进入官网 Previous PyTorch Versions | PyTorch用先前版本的界面中“ctrl+f”查找10.2,找到对应cuda 的版本复制他的命令进行安装,不要去掉-cPytorch,否则就下载的是cpu版本而不是gpu版本

        这个就是适配cuda10.2的pytorch v1.7.1

(二)去软件库下载适配的torch和torchvisiondownload.pytorch.org/whl/torch_stable.html

可以直接在界面上“ctrl+f”查找“粗02”,cu对应的是cuda而不是cpu,102对应的是cuda的版本是10.2,找到对应python版本,Python为3.7及cp37,win即windows系统,64位。下载之后在powershell中cd到下载目录,用pip install进行安装

五、安装mmcv-mmdetection

(一)进入官网依赖 — MMDetection 2.25.0 文档,其实挺详细的,我们已经完成了准备工作

(二)安装mmcv,我们也用具体到版本的安装语句。进入官网找download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html

(三)安装mmdetection,也不使用直接的pip安装,用git

git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"

其中我需要再-e之后加上mmdetection的目录,否则会报错缺少一个安装地址。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值