cba CNN-LSTM-Attention模型

_________________________________________________________________

from tensorflow.keras.layers import *
from tensorflow.keras.models import *

window = 5
input_size = 10
lstm_units = 16
dropout = 0.01
#建立LSTM模型 训练
inputs=Input(shape=(window, input_size))
model=Conv1D(filters = lstm_units, kernel_size = 1, activation = 'sigmoid')(inputs)#卷积层
model=MaxPooling1D(pool_size = window)(model)#池化层
model=Dropout(dropout)(model)#droupout层
model=Bidirectional(LSTM(lstm_units, activation='tanh'), name='bilstm')(model)#双向LSTM层
attention=Dense(lstm_units*2, activation='sigmoid', name='attention_vec')(model)#求解Attention权重
model=Multiply()([model, attention])#attention与LSTM对应数值相乘
outputs = Dense(1, activation='tanh')(model)
model = Model(inputs=inputs, outputs=outputs)
model.compile(loss='mse',optimizer='adam',metrics=['accuracy'])
model.summary()#展示模型结构

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

input_1 (InputLayer) [(None, 20, 13)] 0

_________________________________________________________________

conv1d (Conv1D) (None, 20, 64) 896

_________________________________________________________________

dropout (Dropout) (None, 20, 64) 0

_________________________________________________________________

bidirectional (Bidirectional (None, 20, 128) 66048

_________________________________________________________________

dropout_1 (Dropout) (None, 20, 128) 0

_________________________________________________________________

attention_vec (Dense) (None, 20, 128) 16512

_________________________________________________________________

flatten (Flatten) (None, 2560) 0

_________________________________________________________________

dense (Dense) (None, 1) 2561

=================================================================

Total params: 86,017

Trainable params: 86,017

Non-trainable params: 0

_________________________________________________________________

定义函数的方法

from tensorflow.keras.layers import *
from tensorflow.keras.models import *


# def attention_model(INPUT_DIMS = 13,TIME_STEPS = 20,lstm_units = 64):
INPUT_DIMS = 13
TIME_STEPS = 20
lstm_units = 64
inputs = Input(shape=(TIME_STEPS, INPUT_DIMS))

x = Conv1D(filters=64, kernel_size=1, activation='relu')(inputs)  # padding = 'same'
x = Dropout(0.3)(x)

# lstm_out = Bidirectional(LSTM(lstm_units, activation='relu'), name='bilstm')(x)
lstm_out = Bidirectional(LSTM(lstm_units, return_sequences=True))(x)
lstm_out = Dropout(0.3)(lstm_out)
# attention_mul = attention_3d_block(lstm_out)
attention_mul = Dense(lstm_units * 2, activation='sigmoid', name='attention_vec')(lstm_out)
attention_mul = Flatten()(attention_mul)

output = Dense(1, activation='sigmoid')(attention_mul)
model = Model(inputs=[inputs], outputs=output)
# return model
model.summary()  # 展示模型结构

Layer (type) Output Shape Param #

=================================================================

input_1 (InputLayer) [(None, 20, 13)] 0

_________________________________________________________________

conv1d (Conv1D) (None, 20, 64) 896

_________________________________________________________________

dropout (Dropout) (None, 20, 64) 0

_________________________________________________________________

bidirectional (Bidirectional (None, 20, 128) 66048

_________________________________________________________________

dropout_1 (Dropout) (None, 20, 128) 0

_________________________________________________________________

attention_vec (Dense) (None, 20, 128) 16512

_________________________________________________________________

flatten (Flatten) (None, 2560) 0

_________________________________________________________________

dense (Dense) (None, 1) 2561

=================================================================

Total params: 86,017

Trainable params: 86,017

Non-trainable params: 0

_________________________________________________________________

MATLAB是一种常用的编程语言和开发环境,用于进行各种科学计算和数据分析。CNN-LSTM-SE Attention是一种结合了卷积神经网络(Convolutional Neural Network,CNN)、长短期记忆网络(Long Short-Term Memory Network,LSTM)和自注意力机制(Self-Attention)的深度学习模型CNN是一种常用于图像处理和计算机视觉任务的神经网络模型。它可以自动提取图像中的特征,从而实现图像分类、目标检测等功能。 LSTM是一类特殊的循环神经网络(Recurrent Neural Network,RNN),能够有效地处理序列数据。LSTM具有记忆单元和门控单元,使得它能够捕捉并利用序列数据中的长期依赖关系,适用于自然语言处理、语音识别等任务。 自注意力机制是深度学习中的一种重要技术,能够自动地给序列中的每个元素分配权重。这样,模型可以有选择地关注重要的元素,忽略无关的元素,从而提升模型的性能。 CNN-LSTM-SE Attention结合了CNNLSTM和自注意力机制的优势,能够在处理图像、视频、文本等序列数据时取得良好的效果。模型首先通过CNN提取输入序列的空间特征,然后通过LSTM捕捉序列的时间动态特征,最后利用自注意力机制进一步提取关键信息。 MATLAB提供了强大的深度学习工具箱,能够方便地实现和训练CNN-LSTM-SE Attention模型。利用MATLAB的深度学习工具箱,可以加载预训练的CNNLSTM模型,设计自定义的自注意力机制,并进行端到端的模型训练和评估。 总之,MATLAB的CNN-LSTM-SE Attention是一种用于序列数据处理的深度学习模型,能够从输入序列中提取重要信息,具有广泛的应用前景。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值