温馨提示:本人非自愿写作,请不要做参考,如果给你带来时间的浪费多多包涵
第一章 随机事件与概率
1.1随机事件
随机现象
•随机现象:在一定条件下可能出现也可能不•出现的现象,称为随机现象
•随机现象的特征: 条件不能完全决定结果
概率论就是研究随机现象规律性的一门数学学科
随机试验
•重复性、可观察性(确定性)、随机性
样本空间
•样本空间:一个随机试验E的所有可能结果所组成的集合称为随机试验E的样本空间,记为S
•样本点:样本空间中的元素,即E的每个结果,称为样本点
随机事件
•基本事件:由一个样本点组成的单点集
•复合事件:由多个样本点组成的集合
•必然事件:随机试验中必然会出现的结果
•不可能事件:随机试验中必然不会出现的结国
1.2随机事件的概率
•事件A发生可能性大小的度量--概率P(A)
1.3古典概型与几何概型
古典概型
•古典概型:有限性、等可能性
几何概型
•无限性、均匀性
1.4条件概率
•计算方式:使用公式;计算缩减后的样本空间
•乘法公式P(AB)=P(A)P(B|A)、P(BA)=P(B)P(A|B)
•全概率公式:由因求果,有时根据事件在不同情况或不同原因或不同途径下发生而将它分解成两个或若干个互不相容的部分的并。分别计算每一部分的概率,然后求和
•贝叶斯公式:
已知结果求原因
1.5事件的独立性
两个事件相互独立
A、B相互独立<=>P(A|B)=P(A),P(B)>0;P(B|A)=P(B),P(A)>0
有限个事件的独立性
互斥与独立没有必然联系
伯努利概型
有时,我们需要研究的问题涉及多个甚至无穷多个试验,这多个或无穷多个试验通常称为一个试验序列,如果一个试验序列的各试验的结果之间是相互独立的,则称其为一个独立试验序列,如果只有两个可能结果,则称为伯努利试验