深度卷积对抗神经网络 进阶 第一部分 GANs 在数据增强和隐私领域的应用 GANs for Data Augmentation and Privacy

深度卷积对抗神经网络 进阶 第一部分 GANs 在数据增强和隐私领域的应用 GANs for Data Augmentation and Privacy

GANs可以创造性地生成数据,这样就可以用在数据增强领域,在某些缺乏数据的行业认为地添加数据。此外,生成的数据如果用于神经网络训练,那么以防某些人利用逆向工程的方式窃取原本的个人数据,那么如何保证个人隐私的安全便也是迫在眉睫的事情。

1. GANs的应用回顾 Application recall

  • 图像的转换 image to image:

    image-20230221192915699

    • 转换风格:translate one style to another using gans (gau GAN)
    • 超清图片:GANs super-resolution GAN
    • 多模态图像转化: Multimodal image-to-image translation
  • 文字转化图像Text to image: Image and landmark to Video: Image and face landmarks

  • 图像加工和处理:Image filter et image editing et stylized images

  • 数据增强: Date Augmentation: increase dataset size

    • Medicine: simulating tissues
    • Climate Change
    • Media: deep fakes

2. GANs 应用的优点和缺点 PROs & CONs

优点 Pros:

  • 比手工的更加精细 Can be better than hand-crafted synthetic examples

  • 可以生成更多标记的实例用于训练 (使用conditional GAN)Can generate mor labeled examples using conditional gans

  • 可以改善下游模型的泛化能力,也就是更加的多样化地生成模型对应的实例。Can improve a downstream model’s generalization (mimic the expert’s method, image segmentation)

缺点 Cons:

  • 在数据的多样性,尤其是生成空间的模态数可能很有限,取决于模型训练时所输入到数据的多样性。Can be limited by the available data in diversity
  • 可能会有过拟合的现象。Can overfit to the real training data

3. GANs在数据增强上的应用 Data Augmentation

传统的数据增强方法如下图所示,通过旋转,裁切或者更换颜色,灰度等等来进行。但是如果我们有图像的生成器,我们就能够生成不通的狗狗的图片,其拥有不同的模态,而且是多模态的多样性。

image-20230221194027294

4. GANs在个人隐私保护上的应用 GANs for Privacy

GANs生成或者简介改变图片的功能可以有以下的作用:

  • 保护实际病人的数据 Protects real patient data
  • 鼓励机构之间的数据分享 Can encourage data-sharing between institutions
  • 其生成的数据更加廉价以及更加丰富 Less expensive and more abundant than real data

image-20230221201354448

5. GANs在匿名功能上的应用 GANs for Anonymity

其可以将一些敏感的个人信息或者个人视频进行匿名处理,防止泄露个人的肖像照片,或者隐匿个人身份。比如说:

  • 隐藏身份 Concealing identity

  • 盗取身份Stealing identity

  • 深度伪造的一些图片或者视频 DeepFakes: Deepfakes put words into people’s mouths

  • 提供安全的表达环境 Provide safe environment for expression

    image-20230221201841542

6. 参考信息 Reference

(Optional Notebook) Generative Teaching Networks

Please note that this is an optional notebook, meant to introduce more advanced concepts if you’re up for a challenge, so don’t worry if you don’t completely follow! The first author of this work, Felipe Such, reviewed this notebook for you.

Click on this link to access the optional Colab notebook.

In this notebook, you’ll be implementing a Generative Teaching Network (GTN), first introduced in Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data (Such et al. 2019). Essentially, a GTN is composed of a generator (i.e. teacher), which produces synthetic data, and a student, which is trained on this data for some task. The key difference between GTNs and GANs is that GTN models work cooperatively (as opposed to adversarially).

(Optional) Talking Heads

Fascinated by how you can use GANs to create talking heads and deepfakes? Take a look at the paper!

Few-Shot Adversarial Learning of Realistic Neural Talking Head Models (Zakharov, Shysheya, Burkov, and Lempitsky, 2019): https://arxiv.org/abs/1905.08233

(Optional) De-identification

Curious to learn more about how you can de-identify (anonymize) a face while preserving essential facial attributes in order to conceal an identity? Check out this paper!

De-identification without losing faces (Li and Lyu, 2019): https://arxiv.org/abs/1902.04202

(Optional) GAN Fingerprints

Concerned about distinguishing between real images and fake GAN generated images? See how GANs leave fingerprints!

Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints (Yu, Davis, and Fritz, 2019): https://arxiv.org/abs/1811.08180

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
卷积神经网络(Convolutional Neural Network, CNN)是一种专门针对图像、视频等结构化数据设计的深度学习模型,它在计算机视觉、语音识别、自然语言处理等多个领域都有广泛应用。CNN的核心设计理念源于对生物视觉系统的模拟,尤其是大脑皮层中视觉信息处理的方式,其主要特点包括局部感知、权重共享、多层级抽象以及空间不变性。以下是CNN技术的详细介绍: ### **1. 局部感知与卷积操作** **卷积层**是CNN的基本构建块,它通过使用一组可学习的滤波器(或称为卷积核)对输入图像进行扫描。每个滤波器在图像上滑动(卷积),并以局部区域(感受野)内的像素值与滤波器权重进行逐元素乘法后求和,生成一个输出值。这一过程强调了局部特征的重要性,因为每个滤波器仅对一小部分相邻像素进行响应,从而能够捕获图像中的边缘、纹理、颜色分布等局部特征。 ### **2. 权重共享** 在CNN中,同一滤波器在整个输入图像上保持相同的权重(参数)。这意味着,无论滤波器在图像的哪个位置应用,它都使用相同的参数集来提取特征。这种权重共享显著减少了模型所需的参数数量,增强了模型的泛化能力,并且体现了对图像平移不变性的内在假设,即相同的特征(如特定形状或纹理)不论出现在图像的哪个位置,都应由相同的滤波器识别。 ### **3. 池化操作** **池化层**通常紧随卷积层之后,用于进一步降低数据维度并引入一定的空间不变性。常见的池化方法有最大池化和平均池化,它们分别取局部区域的最大值或平均值作为输出。池化操作可以减少模型对微小位置变化的敏感度,同时保留重要的全局或局部特征。 ### **4. 多层级抽象** CNN通常包含多个卷积和池化层堆叠在一起,形成深度网络结构。随着网络深度的增加,每一层逐渐提取更复杂、更抽象的特征。底层可能识别边缘、角点等低级特征,中间层识别纹理、部件等中级特征,而高层可能识别整个对象或场景等高级语义特征。这种层级结构使得CNN能够从原始像素数据中自动学习到丰富的表示,无需人工设计复杂的特征。 ### **5. 激活函数与正则化** CNN中通常使用非线性激活函数(如ReLU、sigmoid、tanh等)来引入非线性表达能力,使得网络能够学习复杂的决策边界。为了防止过拟合,CNN常采用正则化技术,如L2正则化(权重衰减)来约束模型复杂度,以及Dropout技术,在训练过程中随机丢弃一部分神经元的输出,以增强模型的泛化性能。 ### **6. 应用场景** CNN在诸多领域展现出强大的应用价值,包括但不限于: - **图像分类**:如识别图像中的物体类别(猫、狗、车等)。 - **目标检测**:在图像中定位并标注出特定对象的位置及类别。 - **语义分割**:对图像中的每个像素进行分类,确定其所属的对象或背景类别。 - **人脸识别**:识别或验证个体身份。 - **图像生成**:通过如生成对抗网络(GANs)等技术创建新的、逼真的图像。 - **医学影像分析**:如肿瘤检测、疾病诊断等。 - **自然语言处理**:如文本分类、情感分析、词性标注等,尽管这些任务通常结合其他类型的网络结构(如循环神经网络)。 ### **7. 发展与演变** CNN的概念起源于20世纪80年代,但其影响力在硬件加速(如GPU)和大规模数据集(如ImageNet)出现后才真正显现。经典模型如LeNet-5用于手写数字识别,而AlexNet、VGG、GoogLeNet、ResNet等现代架构在图像识别竞赛中取得突破性成果,推动了CNN技术的快速发展。如今,CNN已经成为深度学习图像处理领域的基石,并持续创新,如引入注意力机制、残差学习、深度可分离卷积等先进思想。 综上所述,卷积神经网络通过其独特的局部感知、权重共享、多层级抽象等特性,高效地从图像数据中提取特征并进行学习,已成为解决图像和视频处理任务不可或缺的工具,并在众多实际应用中取得了卓越的效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Volavion

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值