如何通过对范德蒙德行列式的学习来领悟数学思维

本文将通过一个概念的阐述来讲述数学思维在具体的数学例子上的运用。

关于n阶范德蒙德行列式的论证

首先为什么会有范德蒙德行列式呢?
我们来观察一下 下面这个命题

是否存在一次函数 y=b+kx(k≠0) ,其图像经过两个不同的点 p 1 p_{1} p1( x 1 x_{1} x1, y 1 y_{1} y1),以及 p 2 p_{2} p2( x 2 x_{2} x2, y 2 y_{2} y2)?

毫无疑问,对于上过高中的我们都知道,两点即可确定唯一一条直线。
但是别慌,要是这么简单,怎么能够体现数学思维的厉害之处?

第一步 ,我们需要抽象出一个数学模型或者一个概念来描述这个问题,对于范德蒙德行列式来说,我选取了一个比较简单的概念。
对于这样一个一次函数的存在性,我们的想法很简单,如果我能把一次函数里面的两个未知量k,b解出来的话,就说明存在一个一次函数过这两个不同点,反之解不出来,就证明不存在。
很自然而然的,我们将问题转变成求解未知量的解方程的问题,也即一个二元一次方程组的求解问题。
y 1 y_{1} y1=b+ x 1 x_{1} x1·k (k ≠0 )
y 2 y_{2} y2=b+ x 2 x_{2} x2·k (k ≠0 ) 若使该方程组有解且k≠0,由矩阵的知识我们可以观察方程的系数矩阵的行列式与0的关系,来对方程组解的情况进行判定

∣ 1 x 1 1 x 2 ∣ \left|\begin{array}{cccc} 1 & x_{1} \\ 1 & x_{2}\\ \end{array}\right| 11x1x2= x 2 − x 1 x_{2}-x_{1} x2x1 (这里的矩阵进行了一步提取公因式b,不影响对问题的分析)

分析:1.当 x 1 = x 2 x_{1}=x_{2} x1=x2时,行列式等于0时,二元一次方程无解(因为相等时违反前提条件: p 1 , p 2 p_{1},p_{2} p1,p2为不同点,且k≠0)
2.当 x 1 x_{1} x1 x 2 x_{2} x2时,方程组有唯一解,为了使k≠0,需有 y 1 y_{1} y1 y 2 y_{2} y2,从而有当 x 1 x_{1} x1 x 2 x_{2} x2 y 1 y_{1} y1 y 2 y_{2} y2
时,存在唯一一个二元一次方程组的解, y = k x + b y=kx+b y=kx+b,其图像过 p 1 p_{1} p1( x 1 x_{1} x1, y 1 y_{1} y1), p 2 p_{2} p2( x 2 x_{2} x2, y 2 y_{2} y2)。

接下来我们来进行对该现象的探索

由于上述问题存在两个未知量,属于二维空间的解,那么我们观察如果是在更高的维度上他们的的表述又是怎么样的呢?如果你仔细观察过上面的命题的话,你会发现这其实有点像是一个典型的插值问题,通过插值点来求解多项式的命题。
那么我们再来看看在三维的情况下他是怎么样的呢。

假设我们已知三个点 p 1 ( x 1 , y 1 ) , p 2 ( x 2 , y 2 ) , p 3 ( x 3 , y 3 ) p_{1}(x_{1},y_{1}),p_{2}(x_{2},y_{2}),p_{3}(x_{3},y_{3}) p1(x1,y1),p2(x2,y2),p3(x3,y3),求解存在一个二次多项式,使 p 1 , p 2 , p 3 p_{1},p_{2},p_{3} p1,p2,p3使三个点都在其上。

自然而然的有
y 1 = a + b x 1 + c x 1 2 y_{1}=a+bx_{1}+cx_{1}^{2} y1=a+bx1+cx12
y 2 = a + b x 2 + c x 2 2 y_{2}=a+bx_{2}+cx_{2}^{2} y2=a+bx2+cx22
y 3 = a + b x 3 + c x 3 2 y_{3}=a+bx_{3}+cx_{3}^{2} y3=a+bx3+cx32

写成系数矩阵形式则为 ∣ 1 x 1 x 1 2 1 x 2 x 2 2 1 x 3 x 3 2 ∣ \left|\begin{array}{cccc} 1 & x_{1} & x_{1}^{2}\\ 1 & x_{2}&x_{2}^{2}\\ 1 & x_{3} &x_{3}^{2}\\ \end{array}\right| 111x1x2x3x12x22x32
这里我们引用行列式展开的定理 将行列式进行化简展开
首先将第一列的元素除了第一行以外均化成0 则有 ∣ 1 x 1 x 1 2 0 x 2 − x 1 x 2 2 − x 1 2 0 x 3 − x 1 x 3 2 − x 1 2 ∣ \left|\begin{array}{cccc} 1 & x_{1} & x_{1}^{2}\\ 0 & x_{2}-x_{1}&x_{2}^{2}-x_{1}^{2}\\ 0 & x_{3}-x_{1} &x_{3}^{2}-x_{1}^{2}\\ \end{array}\right| 100x1x2x1x3x1x12x22x12x32x12,展开后并提取公因子后可得
( x 2 − x 1 ) ( x 3 − x 1 ) ∣ 1 x 2 + x 1 1 x 3 + x 1 ∣ (x_{2}-x_{1})(x_{3}-x_{1})\left|\begin{array}{cccc} 1&x_{2}+x_{1}\\ 1&x_{3}+x_{1}\\ \end{array}\right| (x2x1)(x3x1)

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值