关于Query by Committee (QBC)的描述

本文介绍了一种基于QBC框架的方法,通过矩阵完成算法委员会对缺失数据的处理,利用预测分歧度衡量不确定性,并提出查询策略。核心在于利用算法间争议度找出最有价值的标注候选。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Case 1:

The QBC framework quantifies the prediction uncertainty based on the level of disagreement among an ensemble of matrix completion algorithms. Specifically, a committee of matrix completion algorithms are applied on the partially observed data matrix to impute the missing values. The variance of prediction (among the committee members) of each missing entry is taken as a measure of uncertainty of that entry. The top k uncertain entries are then queried for manual annotation.

 

1. The most informative query, then, is the instance over which the committee is in most disagreement about how to label.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeniuHe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值