AcWing 853. 有边数限制的最短路【最短路】【Bellman-Ford】


一、题目链接

AcWing 853. 有边数限制的最短路


二、题目分析

(一)算法标签

最短路 Bellman-Ford

(二)解题思路

不要忘了初始化dist, dist[1]


三、AC代码

解法一:

#include <iostream>
#include <cstring>

using namespace std;

const int N = 510, M = 1e4 +10;

struct Edge{
    int a, b, w;
}edges[M];

int n, m, k;
int dist[N], backup[N];

int bellman_ford() {
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    for (int i = 0; i < k; i ++ ) {
        memcpy(backup, dist, sizeof dist);
        for (int j = 0; j < m; j ++ ) {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            if (dist[b] > backup[a] + w)
                dist[b] = backup[a] + w;
        }
    }
    
    // if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];
}
int main() {
    cin >> n >> m >> k;
    for(int i = 0; i < m; i ++ ) {
        int x, y, z;
        cin >> x >> y >> z;
        edges[i] = {x, y, z};
    }
    
    int t = bellman_ford();
    if (t > 0x3f3f3f3f / 2) puts("impossible");
    else printf("%d", t);
    return 0;
}

四、其它题解

AcWing 853. 有边数限制的最短路 1

AcWing 853. 有边数限制的最短路 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值