Spring Boot 端法律文书分析项目实现方案
一、项目概述
1.1 功能目标
- 实现法律文书的上传、存储、分析和检索
- 支持与Flask AI服务的无缝对接
- 提供高性能的数据处理和缓存机制
- 实现知识图谱的构建和查询
- 支持相似案例检索和智能问答
1.2 技术栈选择
- 核心框架:Spring Boot 3.4.0
- 数据存储:
- MySQL:结构化数据存储
- MongoDB:文书原文存储
- Redis:缓存和队列
- Neo4j:知识图谱存储
- 中间件:
- MyBatis:ORM框架
- Feign:服务调用
- Lombok:代码简化
- Druid:数据库连接池
二、数据库设计
2.1 MySQL表结构
2.1.1 法律文书主表(legal_document)
CREATE TABLE legal_document (
id BIGINT PRIMARY KEY AUTO_INCREMENT,
mongo_id VARCHAR(32) NOT NULL COMMENT 'MongoDB文档ID',
case_number VARCHAR(50) NOT NULL COMMENT '案号',
case_title VARCHAR(200) NOT NULL COMMENT '案件标题',
case_type VARCHAR(50) COMMENT '案件类型',
court VARCHAR(100) COMMENT '法院',
judgment_date DATE COMMENT '判决日期',
status VARCHAR(20) COMMENT '状态:PENDING/ANALYZING/COMPLETED/FAILED',
created_at DATETIME DEFAULT CURRENT_TIMESTAMP,
updated_at DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
INDEX idx_case_number(case_number),
INDEX idx_case_type(case_type),
INDEX idx_court(court)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='法律文书主表';
2.1.2 分析结果表(document_analysis)
CREATE TABLE document_analysis (
id BIGINT PRIMARY KEY AUTO_INCREMENT,
document_id BIGINT NOT NULL COMMENT '文书ID',
analysis_type VARCHAR(50) NOT NULL COMMENT '分析类型',
analysis_result TEXT COMMENT '分析结果JSON',
created_at DATETIME DEFAULT CURRENT_TIMESTAMP,
updated_at DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
FOREIGN KEY (document_id) REFERENCES legal_document(id),
INDEX idx_document(document_id)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='文书分析结果表';
2.2 MongoDB集合设计
2.2.1 文书集合(legal_documents)
{
"_id": "ObjectId",
"caseNumber": "String",
"content": "String",
"metadata": {
"title": "String",
"court": "String",
"date": "Date",
"type": "String"
},
"analysisResult": {
"entities": ["Array"],
"relationships": ["Array"],
"summary": "String"
},
"status": "String",
"createdAt": "Date",
"updatedAt": "Date"
}
2.3 Neo4j图模型
2.3.1 节点类型
- Document(文书)
- Court(法院)
- CaseType(案件类型)
- Entity(实体)
- Concept(概念)
2.3.2 关系类型
- BELONGS_TO(属于)
- REFERENCES(引用)
- RELATES_TO(关联)
- SIMILAR_TO(相似)
2.4 Redis数据结构
2.4.1 队列
- pending_documents: List类型,待处理文档队列
- failed_documents: List类型,处理失败文档队列
2.4.2 缓存
- doc_status:{documentId}: Hash类型,文档状态缓存
- doc_analysis:{documentId}: String类型,分析结果缓存
三、项目结构设计
3.1 核心包结构
com.project.practice/
├── controller/ # REST接口控制器
├── service/ # 业务逻辑层
├── domain/ # 实体类
├── mapper/ # MyBatis接口
├── dto/ # 数据传输对象
├── config/ # 配置类
├── utils/ # 工具类
├── exception/ # 异常处理
└── feign/ # Feign客户端
3.2 配置文件结构
resources/
├── mapper/ # MyBatis XML
├── application.yml
├── application-dev.yml
└── application-prod.yml
四、核心功能实现流程
4.1 文书上传流程
- 接收上传请求
- 文件格式验证
- 存储到MongoDB
- 创建MySQL索引记录
- 加入Redis处理队列
- 返回上传结果
4.2 文书分析流程
- 从Redis队列获取待处理文档
- 调用Flask分析服务
- 解析分析结果
- 更新MongoDB文档
- 更新MySQL状态
- 构建知识图谱
- 缓存分析结果
4.3 知识图谱构建流程
- 提取实体和关系
- 标准化处理
- 创建Neo4j节点
- 建立关系连接
- 更新图谱索引
4.4 智能问答流程
- 接收问题请求
- 上下文处理
- 调用Flask服务
- 结果优化处理
- 返回答案
五、异常处理机制
5.1 全局异常处理
- DocumentProcessException: 文档处理异常
- FlaskServiceException: AI服务调用异常
- DatabaseException: 数据库操作异常
- ValidationException: 数据验证异常
5.2 重试机制
- 失败任务重试队列
- 指数退避策略
- 最大重试次数限制
- 死信队列处理
5.3 日志记录
六、性能优化策略
6.1 缓存策略
- Redis缓存热点数据
- 本地缓存配置
- 缓存更新机制
- 缓存穿透防护
6.2 并发处理
6.3 数据库优化
七、安全措施
7.1 接口安全
7.2 数据安全
八、监控与维护
8.1 系统监控
8.2 运维支持
九、部署方案
9.1 环境配置
9.2 部署步骤
- 数据库初始化
- 配置文件准备
- 应用程序部署
- 服务注册
- 监控配置
十、测试策略
10.1 单元测试
10.2 集成测试