基于NSGAII算法的多目标优化MATLAB仿真
多目标优化问题(Multi-Objective Optimization Problem, MOOP)是指在多个决策变量和目标函数之间存在多个相互矛盾的优化目标,常用的优化方法只能对单一的目标进行优化,难以对多个目标同时进行优化。为了解决这个问题,多目标优化算法应运而生。
NSGAII(Non-dominated Sorting Genetic Algorithm II)算法是一种著名的多目标优化算法,它采用非支配排序的思想,通过将候选解集分成不同层次,然后按层次依次筛选,获得一系列非支配解集合。NSGAII算法已经成为多目标优化领域中最成功、最流行的算法之一。
本文使用MATLAB软件对NSGAII算法进行仿真,实现多目标优化的过程,并提供相关源代码。具体实现步骤如下:
- 定义目标函数
假设我们需要优化的是一个二维的多目标问题,即包含两个目标函数。我们可以定义目标函数如下:
function [y1,y2] = myObjectives(x)
y1 = x(1)^2 + x(2)^2;
y2 = (x(1)-1)^2 + x(2)^2;
end
其中,x表示决策变量,y1和y2表示两个目标函数的值。
- 定义NSGAII算法