BZOJ2820 YY的GCD 莫比乌斯反演

isprime(p)na=1mb=1gcd(a,b)==p
isprime(p)npa=1mpb=1gcd(a,b)==1
isprime(p)npa=1mpb=1d|gcd(a,b)μ(d)
isprime(p)npa=1mpb=1d|ad|bμ(d)
isprime(p)npd=1μ(d)npdmpd
k=pd
nk=1isprime(p)p|kμ(kp)nkmk
F(k)=isprime(p)p|kμ(kp)
nk=1F(k)nkmk
线性筛出 μ 然后枚举质数的倍数 复杂度约是O(n)

#include<bits/stdc++.h>
#define inf 1000000000
#define ll long long
using namespace std;
const int N=1e7+5;
const int M=1e6+5;
int T,n,m,cnt;
bool mark[N];
int pri[M],mu[N];
ll f[N];
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
void getphi() {
    mu[1]=1;
    for(int i=2; i<N; i++) {
        if(!mark[i])pri[++cnt]=i,mu[i]=-1;
        for(int j=1; j<=cnt&&pri[j]*i<N; j++) {
            mark[i*pri[j]]=1;
            if(i%pri[j]==0) {
                mu[i*pri[j]]=0;
                break;
            } else mu[i*pri[j]]=-mu[i];
        }
    }
    for(int i=1; i<=cnt; i++) {
        int p=pri[i];
        for(int j=1; j*p<N; j++)f[j*p]+=mu[j];
    }
    for(int i=1; i<N; i++)f[i]+=f[i-1];
}
int main() {
    getphi(),T=read();
    while(T--) {
        ll ans=0;
        n=read(),m=read();
        if(n>m)swap(n,m);
        for(int i=1,j; i<=n; i=j+1) {
            j=min(n/(n/i),m/(m/i));
            ans+=(f[j]-f[i-1])*(n/i)*(m/i);
        }
        printf("%lld\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值