高等数学笔记:两个重要的级数分析

本文详细分析了p-级数(p=1和p≠1)的敛散性,通过比较判别法证明了当p>1时级数收敛,p≤1时发散。同时,讨论了几何级数(等比级数)的敛散性,指出当|q|<1时级数收敛,|q|≥1时发散。这些结论对于理解级数理论和实际应用具有重要意义。
摘要由CSDN通过智能技术生成

繁星数学随想录·笔记卷

摘录卷

两个重要的级数分析

01 p − p- p级数 ∑ n = 1 ∞ 1 n p \sum\limits_{n=1}^{\infty} \frac{1}{n^p} n=1np1

讨 论 : p − 级 数    ∑ n = 1 ∞ 1 n p 的 敛 散 性    ( 1 )    p = 1   ,   则 原 级 数 = ∑ n = 1 ∞ 1 n = 1 1 + 1 2 + 1 3 + ⋯ + 1 n − 1 + 1 n   。    设   f ( x ) = 1 x   ,   显 然   f ( x )   在   [ n , n + 1 ]   上 递 减   ( n ∈ N )   ,      且   n ⩽ x ⩽ n + 1   ,   则   1 n + 1 ⩽ 1 x ⩽ 1 n   ,      则   1 n + 1 = ∫ n n + 1 1 n + 1 d x   ⩽ ∫ n n + 1 1 x   d x ⩽ ∫ n n + 1 1 n   d x = 1 n   ,      因 此   1 ⩾ ∫ 1 2 1 x   d x   ,   1 2 ⩾ ∫ 2 3 1 x   d x   ,   1 3 ⩾ ∫ 3 4 1 x   d x   ,   ⋯   ,   1 n − 1 ⩾ ∫ n − 1 n 1 x   d x   ,   1 n ⩾ ∫ n n + 1 1 x   d x   ,      所 以   S n = 1 1 + 1 2 + 1 3 + ⋯ + 1 n − 1 + 1 n ⩾    ∫ 1 2 1 x   d x + ∫ 2 3 1 x   d x + ∫ 3 4 1 x   d x + ⋯ + ∫ n − 1 n 1 x   d x + ∫ n n + 1 1 x   d x =    ∫ 1 n + 1 1 x   d x = ln ⁡ x ∣ 1 n + 1 = ln ⁡ ( n + 1 )    所 以   lim ⁡ n → ∞ S n ⩾ lim ⁡ n → ∞ ln ⁡ ( n + 1 )   ,   显 然   lim ⁡ n → ∞ S n → + ∞   ,   级 数 发 散 。    另 外   ,   级 数   ∑ n = 1 ∞ 1 n 发 散 , 该 级 数 称 为 调 和 级 数    ( 2 )    p ≠ 1   ,   则 原 级 数 = ∑ n = 1 ∞ 1 n p = 1 1 p + 1 2 p + 1 3 p + ⋯ + 1 ( n − 1 ) p + 1 n p   。    ①    p < 1   ,   有   n p < n ⇒ 1 n p > 1 n   ,   则   S n = ∑ n = 1 n 1 n p > ∑ n = 1 n 1 n   ( 调 和 级 数 ) 由 正 项 级 数 的 比 较 判 别 法 可 知 , 级 数 发 散 。    ②    p > 1   ,   设   f ( x ) = 1 x p   ,   显 然   f ( x )   在   [ n , n + 1 ]   上 递 减   ( n ∈ N )   ,      且   n p ⩽ x p ⩽ ( n + 1 ) p   ,   则   1 ( n + 1 ) p ⩽ 1 x ⩽ 1 n p   ,      则   S n = 1 1 p + 1 2 p + 1 3 p + ⋯ + 1 ( n − 1 ) p + 1 n p    ( S n   显 然 是 递 增 数 列 )    ⩽   1 + ∫ 1 2 1 x p   d x + ∫ 2 3 1 x p   d x + ⋯ + ∫ n − 1 n 1 x p   d x + ∫ n n + 1 1 x p   d x =    ( 其 中 , 1 1 p ⩽ ∫ 0 1 1 x p d x   为 第 二   p   广 义 积 分 且 发 散 , 故 1 项 不 进 行 放 缩 )    <   1 + ∫ 1 2 1 x p   d x + ∫ 2 3 1 x p   d x + ⋯ + ∫ n − 1 n 1 x p   d x + ∫ n n + 1 1 x p   d x + ∫ n + 1 + ∞ 1 x p   d x =    1 + ∫ 1 + ∞ 1 x p   d x    ( 其 中 , ∫ 1 + ∞ 1 x p   d x   为 第 一   p   广 义 积 分 且 收 敛 )    所 以   lim ⁡ n → ∞ S n   有 上 界   ,   级 数 收 敛 。 综 上   ,   对 于   p − 级 数   ∑ n = 1 ∞ 1 n p   ,   p > 1   时 收 敛   ,   p ⩽ 1   时 发 散 。 \begin{aligned} & 讨论:p-级数\ \ \sum\limits_{n=1}^{\infty} \frac{1}{n^p}的敛散性\\ & \quad\quad \ \ (1)\ \ p=1 \ , \ 则原级数=\sum\limits_{n=1}^{\infty} \frac{1}{n}=\frac11+\frac12+\frac13+\cdots+\frac{1}{n-1}+\frac{1}{n}\ 。 \\ & \quad\quad \ \ \quad\quad设\ f(x)=\frac1x \ , \ 显然\ f(x)\ 在\ [n,n+1] \ 上递减 \ (n\in N) \ , \ \\ & \quad\quad \ \ \quad\quad且\ n \leqslant x \leqslant n+1 \ , \ 则\ \frac{1}{n+1}\leqslant \frac1x \leqslant\frac{1}{n} \ , \ \\ & \quad\quad \ \ \quad\quad则\ \frac{1}{n+1}=\int _{n}^{n+1}\frac{1}{n+1}dx\ \leqslant \int _{n}^{n+1}\frac1x\ dx \leqslant\int _{n}^{n+1}\frac{1}{n}\ dx=\frac{1}{n} \ , \ \\ & \quad\quad \ \ \quad\quad因此\ 1\geqslant\int _{1}^{2}\frac1x\ dx \ , \ \frac12\geqslant\int _{2}^{3}\frac1x\ dx \ , \ \frac13\geqslant\int _{3}^{4}\frac1x\ dx \ , \ \cdots \ , \ \frac{1}{n-1}\geqslant\int _{n-1}^{n}\frac1x\ dx\ , \ \frac{1}{n}\geqslant\int _{n}^{n+1}\frac1x\ dx \ , \ \\ & \quad\quad \ \ \quad\quad所以\ S_n=\frac11+\frac12+\frac13+\cdots+\frac{1}{n-1}+\frac{1}{n} \geqslant \\ & \quad\quad \ \ \quad\quad\quad\quad\quad\quad\int _{1}^{2}\frac1x\ dx+\int _{2}^{3}\frac1x\ dx+\int _{3}^{4}\frac1x\ dx+\cdots+\int _{n-1}^{n}\frac1x\ dx+\int _{n}^{n+1}\frac1x\ dx=\\ \\ & \quad\quad \ \ \quad\quad\quad\quad\quad\quad\int _{1}^{n+1}\frac1x\ dx=\left.\ln x\right|_{1} ^{n+1}=\ln(n+1)\\ \\ & \quad\quad \ \ \quad\quad所以\ \lim \limits_{n \rightarrow \infty} S_{n}\geqslant\lim \limits_{n \rightarrow \infty} \ln(n+1) \ , \ 显然\ \lim \limits_{n \rightarrow \infty} S_{n} \rightarrow +\infty \ , \ 级数发散。\\ & \quad\quad \ \ \quad\quad另外 \ , \ 级数\ \sum\limits_{n=1}^{\infty} \frac{1}{n}发散,该级数称为调和级数 \\ & \quad\quad \ \ (2)\ \ p\neq1 \ , \ 则原级数=\sum\limits_{n=1}^{\infty} \frac{1}{n^p}=\frac{1}{1^p}+\frac{1}{2^p}+\frac{1}{3^p}+\cdots+\frac{1}{(n-1)^p}+\frac{1}{n^p}\ 。 \\ & \quad\quad\quad \ \ ①\ \ p<1 \ , \ 有\ n^p<n\Rightarrow \frac{1}{n^p}>\frac{1}{n} \ , \ 则\ S_{n}=\sum\limits_{n=1}^{n} \frac{1}{n^p}>\sum\limits_{n=1}^{n} \frac{1}{n}\ (调和级数) \\ & \quad\quad\quad\quad\quad\quad\quad\quad由正项级数的比较判别法可知,级数发散。\\ & \quad\quad\quad \ \ ②\ \ p>1 \ , \ 设\ f(x)=\frac{1}{x^p} \ , \ 显然\ f(x)\ 在\ [n,n+1] \ 上递减 \ (n\in N) \ , \ \\ & \quad\quad \ \ \quad\quad且\ n^p \leqslant x^p \leqslant (n+1)^p \ , \ 则\ \frac{1}{(n+1)^p}\leqslant \frac1x \leqslant\frac{1}{n^p} \ , \ \\ & \quad\quad \ \ \quad\quad则\ S_{n}=\frac{1}{1^p}+\frac{1}{2^p}+\frac{1}{3^p}+\cdots+\frac{1}{(n-1)^p}+\frac{1}{n^p}\ \ (S_{n}\ 显然是递增数列)\\ & \quad\quad \ \ \quad\quad\quad\quad\quad\quad\leqslant\ 1+\int _{1}^{2}\frac{1}{x^p}\ dx+\int _{2}^{3}\frac{1}{x^p}\ dx+\cdots+\int _{n-1}^{n}\frac{1}{x^p}\ dx+\int _{n}^{n+1}\frac{1}{x^p}\ dx=\\ & \quad\quad \ \ \quad\quad\quad\quad\quad\quad\quad\quad (其中,\frac{1}{1^p}\leqslant\int _{0}^{1}\frac{1}{x^p}dx\ 为第二\ p\ 广义积分且发散,故1项不进行放缩)\\ & \quad\quad \ \ \quad\quad\quad\quad\quad\quad<\ 1+\int _{1}^{2}\frac{1}{x^p}\ dx+\int _{2}^{3}\frac{1}{x^p}\ dx+\cdots+\int _{n-1}^{n}\frac{1}{x^p}\ dx+\int _{n}^{n+1}\frac{1}{x^p}\ dx+\int _{n+1}^{+\infty}\frac{1}{x^p}\ dx=\\ & \quad\quad \ \ \quad\quad\quad\quad\quad\quad\quad\quad 1+\int _{1}^{+\infty}\frac{1}{x^p}\ dx\ \ (其中,\int _{1}^{+\infty}\frac{1}{x^p}\ dx\ 为第一\ p\ 广义积分且收敛)\\ & \quad\quad \ \ \quad\quad所以\ \lim \limits_{n \rightarrow \infty} S_{n}\ 有上界 \ , \ 级数收敛。\\ & 综上 \ , \ 对于\ p-级数\ \sum\limits_{n=1}^{\infty} \frac{1}{n^p} \ , \ p>1\ 时收敛 \ , \ p\leqslant1\ 时发散。\\ \end{aligned} :p  n=1np1  (1)  p=1 , =n=1n1=11+21+31++n11+n1    f(x)=x1 ,  f(x)  [n,n+1]  (nN) ,    nxn+1 ,  n+11x1n1 ,    n+11=nn+1n+11dx nn+1x1 dxnn+1n1 dx=n1 ,    112x1 dx , 2123x1 dx , 3134x1 dx ,  , n11n1nx1 dx , n1nn+1x1 dx ,    Sn=11+21+31++n11+n1  12x1 dx+23x1 dx+34x1 dx++n1nx1 dx+nn+1x1 dx=  1n+1x1 dx=lnx1n+1=ln(n+1)   nlimSnnlimln(n+1) ,  nlimSn+ ,    ,  n=1n1  (2)  p=1 , =n=1np1=1p1+2p1+3p1++(n1)p1+np1     p<1 ,  np<nnp1>n1 ,  Sn=n=1nnp1>n=1nn1 ()    p>1 ,  f(x)=xp1 ,  f(x)  [n,n+1]  (nN) ,    npxp(n+1)p ,  (n+1)p1x1np1 ,    Sn=1p1+2p1+3p1++(n1)p1+np1  (Sn )   1+12xp1 dx+23xp1 dx++n1nxp1 dx+nn+1xp1 dx=  (1p101xp1dx  p 广1)  < 1+12xp1 dx+23xp1 dx++n1nxp1 dx+nn+1xp1 dx+n+1+xp1 dx=  1+1+xp1 dx  (1+xp1 dx  p 广)   nlimSn  ,  ,  p n=1np1 , p>1  , p1 

02 几何级数 (等比级数) ∑ n = 1 ∞ a q n − 1 \sum\limits_{n=1}^{\infty} aq^{n-1} n=1aqn1

讨 论 : 几 何 级 数    ∑ n = 1 ∞ a q n − 1 的 敛 散 性    ( 1 )    ∣ q ∣ ≠ 1   ,   则 X X X X X X X 。    ①    ∣ q ∣ < 1   ,   则 S n = ∑ n = 1 n a q n − 1 = 首 项 ( 1 − 公 比 项 数 ) 1 − 公 比 = a ( 1 − ∣ q ∣ n ) 1 − ∣ q ∣ = a 1 − ∣ q ∣    ,   级 数 收 敛 。    ②    ∣ q ∣ > 1   ,   则 S n = ∑ n = 1 n a q n − 1 = 首 项 ( 1 − 公 比 项 数 ) 1 − 公 比 = a ( 1 − ∣ q ∣ n ) 1 − ∣ q ∣ → − ∞    ,   级 数 发 散 。    ( 2 )    ∣ q ∣ = 1   ,      ①    q = 1   ,   则 ∑ n = 1 ∞ a q n − 1 = n a    ,   级 数 发 散 。    ②    q = − 1   ,   则 ∑ n = 1 ∞ a q n − 1 = {   0 n = 2 m   a n = 2 m + 1   ,   级 数 发 散 。 综 上   ,   对 于 几 何 级 数    ∑ n = 1 ∞ a q n − 1   ,   ∣ q ∣ < 1   时 收 敛   ,   ∣ q ∣ ⩾ 1   时 发 散 。 \begin{aligned} & 讨论:几何级数\ \ \sum\limits_{n=1}^{\infty} aq^{n-1}的敛散性\\ & \quad\quad \ \ (1)\ \ |q|\neq1 \ , \ 则XXXXXXX。 \\ & \quad\quad\quad \ \ ①\ \ |q|<1 \ , \ 则 S_{n}=\sum\limits_{n=1}^{n} aq^{n-1}=\frac{首项(1-公比^{项数})}{1-公比}=\frac{a(1-|q|^n)}{1-|q|}=\frac{a}{1-|q|}\ \ , \ 级数收敛。 \\ & \quad\quad\quad \ \ ②\ \ |q|>1 \ , \ 则 S_{n}=\sum\limits_{n=1}^{n} aq^{n-1}=\frac{首项(1-公比^{项数})}{1-公比}=\frac{a(1-|q|^n)}{1-|q|}\rightarrow-\infty\ \ , \ 级数发散。 \\ & \quad\quad \ \ (2)\ \ |q|=1 \ , \ \\ & \quad\quad\quad \ \ ①\ \ q=1 \ , \ 则 \sum\limits_{n=1}^{\infty} aq^{n-1}=na\ \ , \ 级数发散。 \\ & \quad\quad\quad \ \ ②\ \ q=-1 \ , \ 则 \sum\limits_{n=1}^{\infty} aq^{n-1}=\begin{cases}\ 0 \quad n=2m \\ \ a \quad n=2m+1 \end{cases} \ , \ 级数发散。 \\ & 综上 \ , \ 对于几何级数\ \ \sum\limits_{n=1}^{\infty} aq^{n-1} \ , \ |q|<1\ 时收敛 \ , \ |q|\geqslant1\ 时发散。\\ \end{aligned} :  n=1aqn1  (1)  q=1 , XXXXXXX    q<1 , Sn=n=1naqn1=1(1)=1qa(1qn)=1qa  ,     q>1 , Sn=n=1naqn1=1(1)=1qa(1qn)  ,   (2)  q=1 ,     q=1 , n=1aqn1=na  ,     q=1 , n=1aqn1={ 0n=2m an=2m+1 ,  ,   n=1aqn1 , q<1  , q1 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值