高等数学笔记-乐经良老师-第二章-极限与连续-第四节-函数的极限

高等数学笔记-乐经良老师

第二章 极限与连续

第四节 函数的极限

一、函数极限的定义

01 自变量趋于无穷大时函数的极限
(1) x → + ∞ x \rightarrow+\infty x+ 的情况
  • x → + ∞ x \rightarrow+\infty x+

    • f ( x ) f(x) f(x) 定义在 [ a , + ∞ ) , ∃ A ∈ R , ∀ ε > 0 [a,+\infty), \exists A \in \mathbf{R}, \forall \varepsilon>0 [a,+),AR,ε>0, ∃ X > a \exists X>a X>a, 当 x > X x>X x>X,
      ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε
      称当 x x x 趋于正无穷时, f ( x ) f(x) f(x) 的极限为 A A A, 或收敛于 A A A 记为
      lim ⁡ x → + ∞ f ( x ) = A  或  f ( x ) → A , ( x → + ∞ ) \lim _{x \rightarrow+\infty} f(x)=A \text { 或 } f(x) \rightarrow A,(x \rightarrow+\infty) x+limf(x)=A  f(x)A,(x+)

    • 注意将此情况与数列极限比较

  • x → − ∞ x \rightarrow-\infty x

    • 自己写
(2) x → ∞ x \rightarrow \infty x 的情况
  • f ( x ) f(x) f(x) 定义在 ∣ x ∣ > a , ∃ A ∈ R , ∀ ε > 0 |x|>a, \exists A \in \mathbf{R}, \forall \varepsilon>0 x>a,AR,ε>0, ∃ X > a \exists X>a X>a, 当 ∣ x ∣ > X |x|>X x>X,
    ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε
    称当 x x x 趋于无穷时, f ( x ) f(x) f(x) 的极限为 A A A, 或收敛于 A A A 记为
    lim ⁡ x → ∞ f ( x ) = A  或  f ( x ) → A , ( x → ∞ ) \lim _{x \rightarrow \infty} f(x)=A \text { 或 } f(x) \rightarrow A,(x \rightarrow \infty) xlimf(x)=A  f(x)A,(x)

  • 推论

    • lim ⁡ n → ∞ f ( x ) = A ⇔ lim ⁡ n → + ∞ f ( x ) = A 且 lim ⁡ n → − ∞ f ( x ) = A \lim \limits_{n \rightarrow \infty} f(x)=A \quad \Leftrightarrow \quad \lim \limits_{n \rightarrow +\infty} f(x)=A \text{且} \lim \limits_{n \rightarrow -\infty} f(x)=A nlimf(x)=An+limf(x)=Anlimf(x)=A
  • x → ± ∞ x \rightarrow±\infty x± ∞ \infty 的极限

    -在这里插入图片描述

02 自变量趋于有限值时函数的极限
(1) x → a x \rightarrow a xa 的情况
  • f ( x ) f(x) f(x)​ 定义在 a a a​ 的去心邻域, 若存在实数 A A A​, ∀ ε > 0 , ∃ δ > 0 \forall \varepsilon>0, \exists \delta>0 ε>0,δ>0​, 当 0 < ∣ x − a ∣ < δ 0<|x-a|<\delta 0<xa<δ​,
    ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε
    称当 x x x 趋于 a a a 时, f ( x ) f(x) f(x)极限 A A A, 或收敛 A A A 记为
    lim ⁡ x → a f ( x ) = A  或  f ( x ) → A , ( x → a ) \lim _{x \rightarrow a} f(x)=A \quad \text { 或 } \quad f(x) \rightarrow A,(x \rightarrow a) xalimf(x)=A  f(x)A,(xa)

  • 定义在去心邻域说明 a a a 点的定义是否存在我们并不关心

  • 从定义知, 此极限与 f ( x ) f(x) f(x) a a a 点的定义无关, 也与 f ( x ) f(x) f(x) a a a 的邻域外的值无关
    在这里插入图片描述

  • x → a x \rightarrow a xa 时的极限是一种双侧极限

(2) x → a + x \rightarrow a^{+} xa+ 的情况(单侧极限)
  • η > 0 , f ( x ) \eta>0, f(x) η>0,f(x) 定义在 ( a , a + η ) (a, a+\eta) (a,a+η), 若存在实数 A A A

    ∀ ε > 0 , ∃ δ > 0 ,  当  0 < x − a < δ , ∣ f ( x ) − A ∣ < ε \forall \varepsilon>0, \exists \delta>0, \text { 当 } 0<x-a<\delta, \\ |f(x)-A|<\varepsilon ε>0,δ>0,  0<xa<δ,f(x)A<ε

    f ( x ) f(x) f(x) a a a 点的右极限 A A A, 记为

    lim ⁡ x → a + f ( x ) = A 或 f ( x ) → A , ( x → a + ) 或 f ( a + 0 ) = A \lim \limits_{x \rightarrow a^{+}} f(x)=A \enspace或\enspace f(x) \rightarrow A,\left(x \rightarrow a^{+}\right)\enspace或\enspace f(a+0)=A xa+limf(x)=Af(x)A,(xa+)f(a+0)=A

  • 考虑 x → a − ( x \rightarrow a^{-}( xa( a − 0 ) a-0) a0) 的情况

  • 显然有,命题

    • lim ⁡ x → a f ( x ) = A ⇔ lim ⁡ x → a + f ( x ) = A  且  lim ⁡ x → a − f ( x ) = A \lim \limits_{x \rightarrow a} f(x)=A \quad \Leftrightarrow \quad \lim \limits_{x \rightarrow a^{+}} f(x)=A \text { 且 } \lim \limits_{x \rightarrow a^{-}} f(x)=A xalimf(x)=Axa+limf(x)=A  xalimf(x)=A
03 函数极限时的无穷小与无穷大
  • 函数极限时的无穷小

    • 函数极限时的无穷小

      lim ⁡ x → a f ( x ) = 0 \lim \limits_{x \rightarrow a} f(x)=0 xalimf(x)=0,则称当 x → a x \rightarrow a xa 时, f ( x ) f(x) f(x) 为无穷小,

      记为: f ( x ) = o ( 1 ) ( x → a ) f(x)=o(1) \quad(x \rightarrow a) f(x)=o(1)(xa)

    • 显然有命题,

      lim ⁡ x → a f ( x ) = A ⇔ f ( x ) − A 为无穷小 \lim \limits_{x \rightarrow a} f(x)=A \Leftrightarrow f(x)-A \text{为无穷小} xalimf(x)=Af(x)A为无穷小

  • 函数极限时的无穷大

    • 函数极限时的无穷大

      f ( x ) f(x) f(x) 定义在 U ∘ ( a ) U^{\circ}(a) U(a) ∀ M > 0 \forall M>0 M>0 ∃ δ > 0 \exists \delta>0 δ>0

      0 < ∣ x − a ∣ < δ 0<|x-a|<\delta 0<xa<δ ∣ f ( x ) ∣ > M |f(x)|>M f(x)>M,则称当 x → a x \rightarrow a xa 时, f ( x ) f(x) f(x) 为无穷大,

      记为: lim ⁡ x → a f ( x ) = ∞ \lim \limits_{x \rightarrow a} f(x)=\infty xalimf(x)=

    • 显然有命题,

      • lim ⁡ x → a 1 f ( x ) = 0 \lim \limits_{x \rightarrow a} \frac{1}{f(x)}=0 xalimf(x)1=0,则 lim ⁡ x → a f ( x ) = ∞ \lim \limits_{x \rightarrow a} f(x)=\infty xalimf(x)=
      • 但是, lim ⁡ x → a f ( x ) = 0 \lim \limits_{x \rightarrow a} f(x)=0 xalimf(x)=0 推不出 lim ⁡ x → a 1 f ( x ) = ∞ \lim \limits_{x \rightarrow a} \frac{1}{f(x)}=\infty xalimf(x)1=​(因为 f ( x ) f(x) f(x) 可能为0)
    • 仍然有 + ∞ +\infty + 和一 ∞ \infty 的情况,注意差别

04 函数极限与数列极限的关系
  • 海涅定理
    • lim ⁡ x → a f ( x ) = A ⟺ ∀ { x n } , x n → a ,则  lim ⁡ n → ∞ f ( x n ) = A \lim \limits_{x \rightarrow a} f(x) =A \quad \Longleftrightarrow \quad \forall\left\{x_{n}\right\}, x_{n} \rightarrow a ,则\ \lim \limits_{n \rightarrow \infty} f\left(x_{n}\right)=A xalimf(x)=A{xn}xna,则 nlimf(xn)=A

二、函数极限的性质、运算法则和判别法

01 性质
(1) 唯一性
  • lim ⁡ x → a f ( x ) = A , lim ⁡ x → a f ( x ) = B , ⇒ A = B \lim \limits_{x \rightarrow a} f(x)=A, \lim \limits_{x \rightarrow a} f(x)=B, \Rightarrow A=B xalimf(x)=A,xalimf(x)=B,A=B
(2) 局部有界性
  • lim ⁡ x → a f ( x ) = A ⇒ ∃ δ > 0 , M > 0 : ∣ f ( x ) ∣ ≤ M , ( x ∈ U ∘ ( a , δ ) ) \lim \limits_{x \rightarrow a} f(x)=A \Rightarrow \exists \delta>0, M>0:|f(x)| \leq M,(x \in \stackrel{\circ}{U}(a, \delta)) xalimf(x)=Aδ>0,M>0:f(x)M,(xU(a,δ))
(3) 局部保号性
  • 表述01
    • lim ⁡ x → a f ( x ) = A > 0 ⇒ ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , f ( x ) > A 2 ( > 0 ) \lim \limits_{x \rightarrow a} f(x)=A>0 \Rightarrow \exists \delta>0,\forall x \in \stackrel{\circ}{U}(a, \delta), f(x)>\frac{A}{2}(>0) xalimf(x)=A>0δ>0,xU(a,δ),f(x)>2A(>0)
  • 表述02
    • 由表述01重写得
    • lim ⁡ x → a f ( x ) = A > 0 ⇒ ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , f ( x ) > 0 \lim \limits_{x \rightarrow a} f(x)=A>0 \Rightarrow \exists \delta>0,\forall x \in \stackrel{\circ}{U}(a, \delta), f(x)>0 xalimf(x)=A>0δ>0,xU(a,δ),f(x)>0​​
    • lim ⁡ x → a f ( x ) = A < 0 ⇒ ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , f ( x ) < 0 \lim \limits_{x \rightarrow a} f(x)=A<0 \Rightarrow \exists \delta>0,\forall x \in \stackrel{\circ}{U}(a, \delta), f(x)<0 xalimf(x)=A<0δ>0,xU(a,δ),f(x)<0
  • 表述03
    • lim ⁡ x → a f ( x ) = A > 0 \lim \limits_{x \rightarrow a} f(x)=A>0 xalimf(x)=A>0 ,那么 ∀ A ′ ∈ ( 0 , A ) , ∀ x ∈ U ∘ ( a , δ ) , \forall A' \in (0,A) , \forall x \in \stackrel{\circ}{U}(a, \delta), A(0,A),xU(a,δ), f ( x ) > A ′ f(x)>A' f(x)>A
    • lim ⁡ x → a f ( x ) = A < 0 \lim \limits_{x \rightarrow a} f(x)=A<0 xalimf(x)=A<0 ,那么 ∀ A ′ ∈ ( A , 0 ) , ∀ x ∈ U ∘ ( a , δ ) , \forall A' \in (A,0) , \forall x \in \stackrel{\circ}{U}(a, \delta), A(A,0),xU(a,δ), f ( x ) < A ′ f(x)<A' f(x)<A
  • 局部保号性的推论
    • 由表述02-②取逆否命题有
    • ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , \exists \delta>0, \forall x \in \stackrel{\circ}{U}(a, \delta), δ>0,xU(a,δ), f ( x ) ≥ 0 f(x)\geq0 f(x)0,那么 lim ⁡ x → a f ( x ) = A ≥ 0 \lim \limits_{x \rightarrow a} f(x)=A\geq0 xalimf(x)=A0
(4) 局部保序性
  • lim ⁡ x → a f ( x ) = A , lim ⁡ x → a g ( x ) = B , A > B \lim \limits_{x \rightarrow a} f(x)=A,\lim \limits_{x \rightarrow a} g(x)=B,A>B xalimf(x)=Axalimg(x)=BA>B​ ,那么 ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , \exists \delta>0, \forall x \in \stackrel{\circ}{U}(a, \delta), δ>0,xU(a,δ),​ 有 f ( x ) > g ( x ) f(x)>g(x) f(x)>g(x)
  • 局部保序性的特殊情况
    • g ( x ) = 0 g(x)=0 g(x)=0​​​ 时,有以下结论:
      • lim ⁡ x → a f ( x ) = A > 0 \lim \limits_{x \rightarrow a} f(x)=A>0 xalimf(x)=A>0​​​ ,那么 ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , \exists \delta>0, \forall x \in \stackrel{\circ}{U}(a, \delta), δ>0,xU(a,δ),​​​ 有 f ( x ) > 0 f(x)>0 f(x)>0
      • lim ⁡ x → a f ( x ) = A < 0 \lim \limits_{x \rightarrow a} f(x)=A<0 xalimf(x)=A<0​​​ ,那么 ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , \exists \delta>0, \forall x \in \stackrel{\circ}{U}(a, \delta), δ>0,xU(a,δ),​​​ 有 f ( x ) < 0 f(x)<0 f(x)<0
    • 将该结论②取逆否命题,有:
      • ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , \exists \delta>0, \forall x \in \stackrel{\circ}{U}(a, \delta), δ>0,xU(a,δ),​​​​ 有 f ( x ) ≥ 0 f(x)\geq0 f(x)0​​​​,那么 lim ⁡ x → a f ( x ) = A ≥ 0 \lim \limits_{x \rightarrow a} f(x)=A\geq0 xalimf(x)=A0​​​​
      • 此即局部保号性的推论,殊途同归
(5) 局部保不等式性
  • ∃ δ > 0 , ∀ x ∈ U ∘ ( a , δ ) , lim ⁡ x → a f ( x ) = A , lim ⁡ x → a g ( x ) = B , f ( x ) > g ( x ) \exists \delta>0, \forall x \in \stackrel{\circ}{U}(a, \delta),\lim \limits_{x \rightarrow a} f(x)=A,\lim \limits_{x \rightarrow a} g(x)=B,f(x)>g(x) δ>0,xU(a,δ),xalimf(x)=Axalimg(x)=Bf(x)>g(x) ,那么有 A > B A>B A>B
02 运算法则
(1) 六则运算

lim ⁡ x → a f ( x ) = A , lim ⁡ x → a g ( x ) = B , h ( x ) \lim \limits_{x \rightarrow a} f(x)=A, \lim \limits_{x \rightarrow a} g(x)=B, h(x) xalimf(x)=A,xalimg(x)=B,h(x) 有界,则:

  • 加减运算

    • lim ⁡ x → a [ f ( x ) ± g ( x ) ] = A ± B \lim \limits_{x \rightarrow a}[f(x) \pm g(x)]=A \pm B xalim[f(x)±g(x)]=A±B
  • 乘法运算与幂运算

    • lim ⁡ x → a f ( x ) g ( x ) = A B , lim ⁡ x → a f m ( x ) = A m \lim \limits_{x \rightarrow a} f(x) g(x)=A B, \quad \lim \limits_{x \rightarrow a} f^{m}(x)=A^{m} xalimf(x)g(x)=AB,xalimfm(x)=Am lim ⁡ x → a f ( x ) h ( x ) = 0 , ( A = 0 ) \lim \limits_{x \rightarrow a} f(x) h(x)=0,(A=0) xalimf(x)h(x)=0,(A=0)
  • 除法运算

    • lim ⁡ x → a f ( x ) g ( x ) = A B ( B ≠ 0 ) \lim \limits_{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{A}{B} \quad(B \neq 0) xalimg(x)f(x)=BA(B=0)
  • 开方运算

    • lim ⁡ x → a f ( x ) m = A m ( f ( x ) ≥ 0  时,  m ∈ N + f ( x ) ≤ 0  时,  m  为奇数  ) \lim _{x \rightarrow a} \sqrt[m]{f(x)}=\sqrt[m]{A} \quad\left(\begin{array}{l}f(x) \geq 0 \text { 时, } m \in N_{+} \\ f(x) \leq 0 \text { 时, } m \text { 为奇数 }\end{array}\right) limxamf(x) =mA (f(x)0 mN+f(x)0 m 为奇数 )
(2) 复合运算法则
  • 复合运算法则

    • lim ⁡ u → l f ( u ) = A , lim ⁡ x → a φ ( x ) = l , φ ( x ) ≠ l ( x ∈ U ˙ ( a ) ) ⇒ lim ⁡ x → a f ( φ ( x ) ) = A \begin{aligned} &\lim \limits_{u \rightarrow l} f(u)=A, \lim \limits_{x \rightarrow a} \varphi(x)=l, \varphi(x) \neq l(x \in \dot{U}(a)) \\ &\Rightarrow \quad \lim \limits_{x \rightarrow a} f(\varphi(x))=A \end{aligned} ullimf(u)=A,xalimφ(x)=l,φ(x)=l(xU˙(a))xalimf(φ(x))=A
  • 复合运算法则意味着

    •  若  lim ⁡ x → a φ ( x ) = l , φ ( x ) ≠ l ( x ∈ U ( a )  时  ) ,  则  lim ⁡ x → a f ( φ ( x ) ) = u = φ ( x ) lim ⁡ u → l f ( u ) \begin{gathered} \text { 若 } \lim \limits_{x \rightarrow a} \varphi(x)=l, \varphi(x) \neq l(x \in U(a) \text { 时 }), \text { 则 } \\ \lim \limits_{x \rightarrow a} f(\varphi(x)) \stackrel{u=\varphi(x)}{=} \lim \limits_{u \rightarrow l} f(u) \end{gathered}   xalimφ(x)=l,φ(x)=l(xU(a)  ),  xalimf(φ(x))=u=φ(x)ullimf(u)
  • 极限运算中可以作变量代换

03 极限存在判别法
  • 夹逼准则
    •  在  U ( a )  内,  g ( x ) ≤ f ( x ) ≤ h ( x )  且  lim ⁡ x → a g ( x ) = lim ⁡ x → a h ( x ) = A ⇒ lim ⁡ x → a f ( x ) = A \begin{aligned} &\text { 在 } U(a) \text { 内, } g(x) \leq f(x) \leq h(x) \\ &\text { 且 } \lim \limits_{x \rightarrow a} g(x)=\lim \limits_{x \rightarrow a} h(x)=A \end{aligned} \quad \Rightarrow \quad \lim \limits_{x \rightarrow a} f(x)=A   U(a) g(x)f(x)h(x)  xalimg(x)=xalimh(x)=Axalimf(x)=A
  • 单调有界函数单侧极限存在定理
    • 定理:在 ( a − δ , a ) (a-\delta, a) (aδ,a)​ 内, f ( x ) f(x) f(x)​ 单调有界, 则 f ( x ) f(x) f(x)​ 在 a a a​ 点的 左极限 lim ⁡ x → a − f ( x ) \lim \limits_{x \rightarrow a^{-}} f(x) xalimf(x)​ 存在
    • 注意,在 a a a​ 点右侧有类似的结论
    • 为什么强调是单侧极限? ==> 因为左右极限并不一定相等

三、两个重要的极限

01 重要极限一: lim ⁡ x → 0 sin ⁡ x x = 1 \lim \limits_{x \rightarrow 0} \frac{\sin x}{x}=1 x0limxsinx=1
  • 引理

    • 0 < ∣ x ∣ < π 2 0<|x|<\frac{\pi}{2} 0<x<2π 时, cos ⁡ x < sin ⁡ x x < 1 \cos x<\frac{\sin x}{x}<1 cosx<xsinx<1
  • 利用几何图形
    在这里插入图片描述

  • 附带的结论:

    • ∣ sin ⁡ x ∣ ≤ ∣ x ∣ |\sin x| \leq|x| sinxx
    • lim ⁡ x → 0 sin ⁡ x = 0 \lim \limits_{x \rightarrow 0} \sin x=0 x0limsinx=0
    • lim ⁡ x → 0 cos ⁡ x = 1 \lim \limits_{x \rightarrow 0} \cos x=1 x0limcosx=1
02 重要极限二: lim ⁡ x → 0 ( 1 + 1 x ) x = e \lim \limits_{x \rightarrow 0} (1+\frac{1}{x})^x=e x0lim(1+x1)x=e
  • 利用夹逼定理和 lim ⁡ n → 0 ( 1 + 1 n ) n = e \lim \limits_{n \rightarrow 0} (1+\frac{1}{n})^n=e n0lim(1+n1)n=e
  • n = [ x ] n=[x] n=[x], 当 x > 1 x>1 x>1 时有 n ≤ x < n + 1 n \leq x<n+1 nx<n+1
  • x → − ∞ x \rightarrow-\infty x 时, 作变换 y = − x y=-x y=x
  • 利用简单的变换,立刻得到 lim ⁡ x → 0 ( 1 + 1 x ) x \lim \limits_{x \rightarrow 0} (1+\frac{1}{x})^x x0lim(1+x1)x
  • 如果联系复合函数的极限就得到:
    • 若当 x → a x \rightarrow a xa 时, Δ → 0 \Delta \rightarrow 0 Δ0, 则 sin ⁡ Δ Δ → 1 ( 1 + Δ ) 1 Δ → e \frac{\sin \Delta}{\Delta} \rightarrow 1 \quad(1+\Delta)^{\frac{1}{\Delta}} \rightarrow \mathrm{e} ΔsinΔ1(1+Δ)Δ1e

四、无穷小的比较

01 比较
  • 无穷小比较的概念
    • lim ⁡ x → a α ( x ) = 0 , lim ⁡ x → a β ( x ) = 0 \lim \limits_{x \rightarrow a} \alpha(x)=0, \lim \limits_{x \rightarrow a} \beta(x)=0 xalimα(x)=0,xalimβ(x)=0, 且 lim ⁡ x → a β ( x ) α ( x ) = l \lim \limits_{x \rightarrow a} \frac{\beta(x)}{\alpha(x)}=l xalimα(x)β(x)=l
    • l = 0 l=0 l=0 时, 称 x → a x \rightarrow a xa β ( x ) \beta(x) β(x) 是比 α ( x ) \alpha(x) α(x) 高阶的无穷小,记为: β ( x ) = o ( α ( x ) ) , x → a \beta(x)=o(\alpha(x)), \quad x \rightarrow a β(x)=o(α(x)),xa
    • l ≠ 0 l \neq 0 l=0 时, 称 x → a x \rightarrow a xa β ( x ) \beta(x) β(x) 是与 α ( x ) \alpha(x) α(x) 同阶的无穷小
    • 特别 l = 1 l=1 l=1 时, 称 x → a x \rightarrow a xa β ( x ) \beta(x) β(x) α ( x ) \alpha(x) α(x) 等价的无穷小,记为: β ( x ) ∼ α ( x ) , x → a \beta(x) \sim \alpha(x), \quad x \rightarrow a β(x)α(x),xa
  • 命题
    • x → a x \rightarrow a xa 时, α ( x ) ∼ β ( x ) ⇔ α ( x ) − β ( x ) = O ( α ( x ) ) \alpha(x) \sim \beta(x) \Leftrightarrow \alpha(x)-\beta(x)=O(\alpha(x)) α(x)β(x)α(x)β(x)=O(α(x))
02 无穷小的阶
  • lim ⁡ x → a α ( x ) = lim ⁡ x → a β ( x ) = 0 \lim \limits_{x \rightarrow a} \alpha(x) =\lim \limits_{x \rightarrow a} \beta(x)=0 xalimα(x)=xalimβ(x)=0​​​,且 ∃ C ≠ 0 , k > 0 : \exists C \neq 0, k>0: C=0,k>0:​​ β ( x ) ∼ C α k ( x ) \beta(x) \sim C \alpha^{k}(x) β(x)Cαk(x) ( x → a ) (x \rightarrow a) (xa)​​,​​​​​

    则称当 x → a x \rightarrow a xa​ 时, β ( x ) \beta(x) β(x)​ 是 α ( x ) \alpha(x) α(x)​ 的 k k k​ 阶无穷小, C α k ( x ) C \alpha^{k}(x) Cαk(x)​ 称为 β ( x ) \beta(x) β(x)​​​ 的主部.

  • 主部 ==> 主要部分 + 高阶无穷小

  • 在无穷小进行运算或比较时, 常取一个形式简单的无穷小作为 “标准”

    • x → 0 x \rightarrow 0 x0 时, 取 x , x → ∞ x, x \rightarrow \infty x,x 时, 取 1 x \frac{1}{x} x1
03 利用等价无穷小替换求极限

求极限时,可将式子分子或分母的无穷小**因子**用等价无穷小替换

最后

😊为防止河蟹,链接已经通过“与熊论道/熊曰加密”加密处理,将下面的文字复制到“与熊论道/熊曰加密”页面的第二个输入框,点击“领悟熊所言的真谛”即可查看链接啦:
😊熊曰:呋食食雜森哮嗥註魚吃呱山萌萌笨有哞魚既魚性蜜覺呆食哮性洞哮山噗眠嗥嚄萌洞擊嗄襲呱物人你
😊如果嫌麻烦的话请私信咨询博主,谢谢!
😊PS:繁星依月/惟欢/一舟均为博主的马甲,本篇作品完全原创,再次感谢!

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
R语言实战笔记第九章介绍了方差分析的内容。方差分析是一种用于比较两个或多个组之间差异的统计方法。在R语言中,可以使用lm函数进行方差分析的回归拟合。lm函数的基本用法是: myfit <- lm(I(Y^(a))~x I(x^2) I(log(x)) var ... [-1],data=dataframe 其中,Y代表因变量,x代表自变量,a代表指数,var代表其他可能对模型有影响的变量。lm函数可以拟合回归模型并提供相关分析结果。 在方差分析中,还需要进行数据诊断,以确保模型的可靠性。其中几个重要的诊断包括异常观测值、离群点和高杠杆值点。异常观测值对于回归分析来说非常重要,可以通过Q-Q图和outlierTest函数来检测。离群点在Q-Q图中表示落在置信区间之外的点,需要删除后重新拟合并再次进行显著性检验。高杠杆值点是指在自变量因子空间中的离群点,可以通过帽子统计量来识别。一般来说,帽子统计量高于均值的2到3倍即可标记为高杠杆值点。 此外,方差分析还需要关注正态性。可以使用car包的qqplot函数绘制Q-Q图,并通过线的位置来判断数据是否服从正态分布。落在置信区间内为优,落在置信区间之外为异常点,需要进行处理。还可以通过绘制学生化残差的直方图和密度图来评估正态性。 综上所述,R语言实战第九章介绍了方差分析及其相关的数据诊断方法,包括异常观测值、离群点、高杠杆值点和正态性检验。这些方法可以用于分析数据的可靠性和模型的适应性。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [R语言实战笔记--第八章 OLS回归分析](https://blog.csdn.net/gdyflxw/article/details/53870535)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值