高等数学笔记:多元抽象复合函数求二阶偏导数

多元抽象复合函数求二阶偏导

一、多元复合函数

  • 形如 f ( x + y + z , x y z ) f(x+y+z,xyz) f(x+y+z,xyz) 的函数

二、求导策略

  • 一阶偏导求解的核心策略是:链式法则(最好用!
  • 二阶偏导求解的核心策略是:矩阵公式法

三、雅可比矩阵与海森矩阵

01 雅可比矩阵与海森矩阵的概念

现有多元函数组 f 1 ( x 1 , x 2 , ⋯   , x n )   ,   f 2 ( x 1 , x 2 , ⋯   , x n )   , ⋯   ,   f m ( x 1 , x 2 , ⋯   , x n ) \mathrm{f_1(x_1,x_2,\cdots,x_n)\ ,\ f_2(x_1,x_2,\cdots,x_n)\ ,\cdots\ ,\ f_m(x_1,x_2,\cdots,x_n)} f1(x1,x2,,xn) , f2(x1,x2,,xn) , , fm(x1,x2,,xn)

那么其雅可比矩阵如下所示,它储存了该函数组所有一阶偏导数的信息
J = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ⋯ ∂ f 1 ∂ x n ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ⋯ ∂ f 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ f m ∂ x 1 ∂ f m ∂ x 2 ⋯ ∂ f m ∂ x n ] \mathrm{ J= \left[\begin{array}{cccc} \displaystyle{ \frac{\partial f_{1}}{\partial x_{1}} } & \displaystyle{ \frac{\partial f_{1}}{\partial x_{2}} } & \cdots & \displaystyle{ \frac{\partial f_{1}}{\partial x_{n}} } \\ \displaystyle{ \frac{\partial f_{2}}{\partial x_{1}} } & \displaystyle{ \frac{\partial f_{2}}{\partial x_{2}} } & \cdots & \displaystyle{ \frac{\partial f_{2}}{\partial x_{n}} } \\ \vdots & \vdots & \ddots & \vdots \\ \displaystyle{ \frac{\partial f_{m}}{\partial x_{1}} } & \displaystyle{ \frac{\partial f_{m}}{\partial x_{2}} } & \cdots & \displaystyle{ \frac{\partial f_{m}}{\partial x_{n}} } \\ \end{array}\right] } J= x1f1x1f2x1fmx2f1x2f2x2fmxnf1xnf2xnfm
我们可以观察到,它满足同一行(hang)同一函数(han),同一列(lie)同一自变量(liang)的规律

当多元函数组退化为一个多元函数时,其表示成
J = [ ∂ f ∂ x 1   ,   ∂ f ∂ x 2   ,   ⋯   ,   ∂ f ∂ x n ] \mathrm{ J= \left[\begin{array}{cccc} \displaystyle{ \frac{\partial f}{\partial x_{1}} } \ ,\ \displaystyle{ \frac{\partial f}{\partial x_{2}} } \ ,\ \cdots \ ,\ \displaystyle{ \frac{\partial f}{\partial x_{n}} } \end{array}\right] } J=[x1f , x2f ,  , xnf]
此时这个多元函数海森矩阵如下所示,它储存了这个多元函数所有二阶偏导数的信息
H = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 ⋯ ∂ 2 f ∂ x n 2 ] \mathrm{ H= \left[\begin{array}{cccc} \displaystyle{ \frac{\partial^2 f}{\partial x_1^2} } & \displaystyle{ \frac{\partial^2 f}{\partial x_1\partial x_2} } & \cdots & \displaystyle{ \frac{\partial^2 f}{\partial x_1\partial x_n} } \\ \displaystyle{ \frac{\partial^2 f}{\partial x_2\partial x_1} } & \displaystyle{ \frac{\partial^2 f}{\partial x_2^2} } & \cdots & \displaystyle{ \frac{\partial^2 f}{\partial x_2\partial x_n} } \\ \vdots & \vdots & \ddots & \vdots \\ \displaystyle{ \frac{\partial^2 f}{\partial x_n\partial x_1} } & \displaystyle{ \frac{\partial^2 f}{\partial x_n\partial x_2} } & \cdots & \displaystyle{ \frac{\partial^2 f}{\partial x_n^2} } \\ \end{array}\right] } H= x122fx2x12fxnx12fx1x22fx222fxnx22fx1xn2fx2xn2fxn22f
显然,当多元函数 f \mathrm{f} f 二阶偏导数连续时,海森矩阵为实对称矩阵

02 不同情况下雅可比行列式的形式

当多元函数组由两个二元函数 {   u ( x , y ) = 0   v ( x , y ) = 0 \mathrm{\begin{cases}\ u(x,y)=0 \\ \ v(x,y)=0 \end{cases}} { u(x,y)=0 v(x,y)=0 组成时,我们可以把它写成
J = [ ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ] \mathrm{ J= \left[\begin{array}{cccc} \displaystyle{ \frac{\partial u}{\partial x} } & \displaystyle{ \frac{\partial u}{\partial y} } \\ \displaystyle{ \frac{\partial v}{\partial x} } & \displaystyle{ \frac{\partial v}{\partial y} } \end{array}\right] } J= xuxvyuyv
当多元函数组由三个二元函数 {   u ( x , y ) = 0   v ( x , y ) = 0   w ( x , y ) = 0 \mathrm{\begin{cases}\ u(x,y)=0 \\ \ v(x,y)=0\\ \ w(x,y)=0 \end{cases}}  u(x,y)=0 v(x,y)=0 w(x,y)=0 组成时,我们可以把它写成
J = [ ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ∂ w ∂ x ∂ w ∂ y ] \mathrm{ J= \left[\begin{array}{cccc} \displaystyle{ \frac{\partial u}{\partial x} } & \displaystyle{ \frac{\partial u}{\partial y} } \\ \displaystyle{ \frac{\partial v}{\partial x} } & \displaystyle{ \frac{\partial v}{\partial y} } \\ \displaystyle{ \frac{\partial w}{\partial x} } & \displaystyle{ \frac{\partial w}{\partial y} } \end{array}\right] } J= xuxvxwyuyvyw

03 不同情况下海森矩阵的形式

当函数为 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0 时,海森矩阵表达为:
H = [ f x x ′ ′ f x y ′ ′ f y x ′ ′ f y y ′ ′ ] \mathrm{ H= \left[\begin{array}{cccc} f''_{xx} & f''_{xy}\\ f''_{yx} & f''_{yy} \end{array}\right] } H=[fxx′′fyx′′fxy′′fyy′′]
当函数为 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 时,海森矩阵表达为:
H = [ F x x ′ ′ F x y ′ ′ F x z ′ ′ F y x ′ ′ F y y ′ ′ F y z ′ ′ F z x ′ ′ F z y ′ ′ F z z ′ ′ ] \mathrm{ H= \left[\begin{array}{cccc} F''_{xx} & F''_{xy} & F''_{xz}\\ F''_{yx} & F''_{yy} & F''_{yz}\\ F''_{zx} & F''_{zy} & F''_{zz} \end{array}\right] } H= Fxx′′Fyx′′Fzx′′Fxy′′Fyy′′Fzy′′Fxz′′Fyz′′Fzz′′

四、矩阵公式法

四、矩阵公式法

01 定理内容

(1) 一般的偏导数求解
  • 若函数 u = f ( x 1 , x 2 , ⋯   , x n ) u=f\left(x_{1}, x_{2}, \cdots, x_{n}\right) u=f(x1,x2,,xn) ( x 1 , x 2 , ⋯   , x n ) \left(x_{1}, x_{2}, \cdots, x_{n}\right) (x1,x2,,xn) 可微,而 x i = φ i ( t 1 , t 2 , ⋯   , t m ) x_{i}=\varphi_{i}\left(t_{1}, t_{2}, \cdots, t_{m}\right) xi=φi(t1,t2,,tm) 在点 ( t 1 , t 2 \left(t_{1}, t_{2}\right. (t1,t2, ⋯   , t m ) \left.\cdots, t_{m}\right) ,tm)
  • 存在偏导数 ( i = 1 , 2 , ⋯   , n ) (i=1,2, \cdots, n) (i=1,2,,n),则 u = f ( φ 1 ( t 1 , t 2 , ⋯   , t m ) , ⋯   , φ n ( t 1 , t 2 , ⋯   , t m ) ) u=f\left(\varphi_{1}\left(t_{1}, t_{2}, \cdots, t_{m}\right), \cdots, \varphi_{n}\left(t_{1}, t_{2}, \cdots, t_{m}\right)\right) u=f(φ1(t1,t2,,tm),,φn(t1,t2,,tm)) ( t 1 , t 2 , ⋯   , t m ) \left(t_{1}, t_{2}, \cdots, t_{m}\right) (t1,t2,,tm) 处存在偏导数,
  • 且有: ∂ u ∂ t j = ∂ u ∂ x 1 ∂ φ 1 ∂ t j + ∂ u ∂ x 2 ∂ φ 2 ∂ t j + … + ∂ u ∂ x n ∂ φ n ∂ t j , ( j = 1 , ⋯   , m ) . \displaystyle{ \frac{\partial u}{\partial t_{j}}=\frac{\partial u}{\partial x_{1}} \frac{\partial \varphi_{1}}{\partial t_{j}}+\frac{\partial u}{\partial x_{2}} \frac{\partial \varphi_{2}}{\partial t_{j}}+\ldots+\frac{\partial u}{\partial x_{n}} \frac{\partial \varphi_{n}}{\partial t_{j}},(j=1, \cdots, m) . } tju=x1utjφ1+x2utjφ2++xnutjφn,(j=1,,m).
(2) 矩阵公式定理
  • 设函数 u = f ( x 1 , x 2 , ⋯   , x n )   ,   ∂ u ∂ x 1 , ∂ u ∂ x 2 , ⋯   , ∂ u ∂ x n \displaystyle{ u=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)\ ,\ \frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, \cdots, \frac{\partial u}{\partial x_{n}} } u=f(x1,x2,,xn) , x1u,x2u,,xnu ( x 1 , x 2 , ⋯   , x n ) \left(x_{1}, x_{2}, \cdots, x_{n}\right) (x1,x2,,xn) 处可微,

  • 函数 x i = φ i ( t 1 , t 2 x_{i}=\varphi_{i}\left(t_{1}, t_{2}\right. xi=φi(t1,t2, ⋯   , t m ) \left.\cdots, t_{m}\right) ,tm) 在点 ( t 1 , t 2 , ⋯   , t m ) \left(t_{1}, t_{2}, \cdots, t_{m}\right) (t1,t2,,tm) 有二阶偏导数,

  • 则复合函数 u = f ( φ 1 ( t 1 , t 2 , ⋯   , t m ) , ⋯   , φ n ( t 1 , t 2 , ⋯   , t m ) ) u=f\left(\varphi_{1}\left(t_{1}, t_{2}, \cdots, t_{m}\right), \cdots, \varphi_{n}\left(t_{1}, t_{2}, \cdots, t_{m}\right)\right) u=f(φ1(t1,t2,,tm),,φn(t1,t2,,tm)) 在点 ( t 1 , t 2 , ⋯   , t m ) \left(t_{1}, t_{2}, \cdots, t_{m}\right) (t1,t2,,tm) 处存在二阶偏导数,

  • 且有公式( i ∈ { 1 , 2 , ⋯   , m }   ,   j = 1 , 2 , ⋯   , m i\in\{1,2, \cdots, m\}\ , \ j=1,2, \cdots, m i{1,2,,m} , j=1,2,,m ):

在这里插入图片描述

02 常见形式

在解决实际问题的时候,我们通常接触的是,一阶、二阶、三阶矩阵的形式,我们下面分别给出:

(1) 一阶形式

在这里插入图片描述

(2) 二阶形式

在这里插入图片描述

(3) 三阶形式

在这里插入图片描述

(4) 统一形式

显然,我们可以统一写成如下形式:

在这里插入图片描述

(4) 线性复合

接下来根据上述结论我们讨论一种常见的类型,线性复合。

形如 z = f ( u , v )   ,   u = a x + b y + e   ,   v = c x + d y + f z=f(u,v)\ , \ u=ax+by+e\ , \ v=cx+dy+f z=f(u,v) , u=ax+by+e , v=cx+dy+f 的二元抽象线性复合函数,代入公式可以得到:

在这里插入图片描述

identity 身份认证 购VIP最低享 7 折! triangle vip 30元优惠券将在 04:24:36 后过期 去使用 triangle 数据可视化是将复杂的数据集通过图表、图像等视觉元素进行呈现,以便于人们更容易地理解和解读数据。在“数据可视化期末课设~学生成绩可视化分析.zip”这个压缩包中,我们可以看到一系列与数据可视化相关的资源,包括Jupyter代码、HTML图片、答辩PPT以及Word文档,这些内容涵盖了数据可视化的基础到高级应用,适合于完成一个全面的期末课程设计项目。 Jupyter代码是使用Python编程语言进行数据处理和可视化的主要工具。在这个项目中,学生可能使用了pandas库来加载和清洗数据,可能涉及到的数据处理步骤包括去除重复值、处理缺失值以及数据类型转换等。接着,他们可能使用matplotlib或seaborn库来创建各种图表,如直方图、散点图、箱线图等,以展示学生成绩的分布、对比和趋势。此外,更高级的可视化库如plotly或bokeh可能也被用来实现交互式图表,增加用户对数据的理解深度。 保存的HTML图片是Jupyter Notebook的输出结果,它展示了代码运行后的可视化效果。这些图片可以直观地揭示学生成绩的统计特征,例如平均分、标准差、最高分和最低分等。通过颜色编码或者图例,我们可以识别出不同科目或者不同班级的表现,帮助分析教学质量和学生学习情况。 答辩PPT则可能包含项目的概述、目的、方法、结果和结论。在PPT中,学生可能会详细阐述他们选择特定可视化方法的理由,如何解读图表,以及从数据中得出的洞察。此外,PPT的制作也是展示其表达和沟通能力的重要部分,要清晰、有逻辑地组织信息。 Word文档可能是项目报告,详细记录了整个过程,包括数据来源、预处理步骤、使用的可视化技术、分析结果以及可能遇到的问题和解决方案。报告中的数据分析部分会详细解释图表背后的含义,例如通过对比不同学科的分数分布,找出哪些科目可能存在困难,或者分析成绩与特定因素(如性别、年级等)的关系。 这个压缩包提供了完整的数据可视化项目实例,涉及了数据获取、处理、可视化和解释的一系列步骤,对于学习和掌握数据可视化技能非常有价值。通过这样的练习,学生不仅能够提高编程技巧,还能培养数据驱动思维和问题解决能力,为未来从事数据分析或相关领域的工作打下坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值