高等数学笔记:复合函数的二阶导数与参数方程求解曲率

繁星数学随想录·技巧卷

复合函数的二阶导数与参数方程求解曲率

复合函数的二阶导数

通过函数乘法求导运算法则,经计算可得结果:
y = y ( x )    ,    x = x ( t ) x ′ ( t ) = d x d t   ,   y ′ ( t ) = d y d t   ,   x ′ ′ ( t ) = d 2 x d t 2   ,   y ′ ′ ( t ) = d 2 y d t 2 d 2 y d x 2 = [    ] ⋅ y ′ ′ ( t ) − [    ] ⋅ x ′ ′ ( t ) d 2 y d x 2 = [ x ′ ( t ) x ′ ( t ) 3 ] ⋅ y ′ ′ ( t ) − [ y ′ ( t ) x ′ ( t ) 3 ] ⋅ x ′ ′ ( t ) d 2 y d x 2 = [ x ′ ( t ) x ′ ( t ) 3 ] ⋅ y ′ ′ ( t ) − [ y ′ ( t ) x ′ ( t ) 3 ] ⋅ x ′ ′ ( t ) = ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ x ′ ( t ) 3 \begin{aligned} & y=y(x) \ \ , \ \ x=x(t)\\ \\ & x'(t)=\frac{dx}{dt} \ , \ y'(t)=\frac{dy}{dt} \ , \ x''(t)=\frac{d^2x}{dt^2} \ , \ y''(t)=\frac{d^2y}{dt^2}\\ \\ & \frac{d^2y}{dx^2}=[\ \ ]\cdot y''(t)-[\ \ ]\cdot x''(t)\\ \\ & \frac{d^2y}{dx^2}=[\frac{x'(t)}{x'(t)^3}]\cdot y''(t)-[\frac{y'(t)}{x'(t)^3}]\cdot x''(t)\\ & \frac{d^2y}{dx^2}=[\frac{x'(t)}{x'(t)^3}]\cdot y''(t)-[\frac{y'(t)}{x'(t)^3}]\cdot x''(t)=\frac{\left|\begin{array}{ll} x'(t) & x''(t) \\ y'(t) & y''(t) \end{array}\right|}{x'(t)^3} \end{aligned} y=y(x)  ,  x=x(t)x(t)=dtdx , y(t)=dtdy , x′′(t)=dt2d2x , y′′(t)=dt2d2ydx2d2y=[  ]y′′(t)[  ]x′′(t)dx2d2y=[x(t)3x(t)]y′′(t)[x(t)3y(t)]x′′(t)dx2d2y=[x(t)3x(t)]y′′(t)[x(t)3y(t)]x′′(t)=x(t)3 x(t)y(t)x′′(t)y′′(t)

参数方程求解曲率

曲率公式为: k = ∣ y ′ ′ ( 1 + y ′ 2 ) 3 2 ∣ \displaystyle{ k=\left|\frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}\right| }% k= (1+y′2)23y′′ ,这意味着,我们求解曲率的核心诉求转变为求解一阶导和二阶导的值。

由于在复合函数求二阶导的过程中,我们计算二阶导是将 x x x y y y 分别看作 t t t 的函数,而这也恰恰符合参数方程的形式,于是,对于参数方程的二阶导数,我们依然有与【复合函数的二阶导数】相同的结论。

然后代入曲率公式,经计算化简可以得到:
y = y ( x )    ,    x = x ( t ) x ′ ( t ) = d x d t   ,   y ′ ( t ) = d y d t   ,   x ′ ′ ( t ) = d 2 x d t 2   ,   y ′ ′ ( t ) = d 2 y d t 2 d 2 y d x 2 = [ x ′ ( t ) x ′ ( t ) 3 ] ⋅ y ′ ′ ( t ) − [ y ′ ( t ) x ′ ( t ) 3 ] ⋅ x ′ ′ ( t ) = ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ x ′ ( t ) 3 k = ∣ x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 2 = ∣ ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 \begin{aligned} & y=y(x) \ \ , \ \ x=x(t)\\ \\ & x'(t)=\frac{dx}{dt} \ , \ y'(t)=\frac{dy}{dt} \ , \ x''(t)=\frac{d^2x}{dt^2} \ , \ y''(t)=\frac{d^2y}{dt^2}\\ & \frac{d^2y}{dx^2}=[\frac{x'(t)}{x'(t)^3}]\cdot y''(t)-[\frac{y'(t)}{x'(t)^3}]\cdot x''(t)=\frac{\left|\begin{array}{ll} x'(t) & x''(t) \\ y'(t) & y''(t) \end{array}\right|}{x'(t)^3} \\ \\ & k = \frac{|x'(t)y''(t)-x''(t)y'(t)|}{(x'(t)^2+y'(t)^2)^{\frac32}} =\frac{\left|\left|\begin{array}{ll} x'(t) & x''(t) \\ y'(t) & y''(t) \end{array}\right|\right|}{(\sqrt{x'(t)^2+y'(t)^2})^3} \\ \end{aligned} y=y(x)  ,  x=x(t)x(t)=dtdx , y(t)=dtdy , x′′(t)=dt2d2x , y′′(t)=dt2d2ydx2d2y=[x(t)3x(t)]y′′(t)[x(t)3y(t)]x′′(t)=x(t)3 x(t)y(t)x′′(t)y′′(t) k=(x(t)2+y(t)2)23x(t)y′′(t)x′′(t)y(t)=(x(t)2+y(t)2 )3 x(t)y(t)x′′(t)y′′(t)
在代入方程时,我们可以通过表格法参数方程作为辅助求解曲率(代入数值的手段),

遵循【交叉相乘再相减,平方求和开根号】的原则,

′ ' ′ ′ '' ′′
x x x x ′ ( t ) = x ′ ( t 0 ) x'(t)=x'(t_0) x(t)=x(t0) x ′ ′ ( t ) = x ′ ′ ( t 0 ) x''(t)=x''(t_0) x′′(t)=x′′(t0)
y y y y ′ ( t ) = y ′ ( t 0 ) y'(t)=y'(t_0) y(t)=y(t0) y ′ ′ ( t ) = y ′ ′ ( t 0 ) y''(t)=y''(t_0) y′′(t)=y′′(t0)

以题目作为示例:
曲线 { x = t 2 + 2 t y = 3 ln ⁡ t  上对应于  t = 1  的点处的曲率是 曲线 \left\{\begin{array}{l}x=t^{2}+2 t \\ y=3 \ln t\end{array}\right.\ 上对应于\ t=1\ 的点处的曲率是 曲线{x=t2+2ty=3lnt 上对应于 t=1 的点处的曲率是
解答过程:
k = ∣ ∣ x ′ ( t ) x ′ ′ ( t ) y ′ ( t ) y ′ ′ ( t ) ∣ ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 = ∣ ∣            ∣ ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3    ( 草稿纸写这个即可 ) k =\frac{\left|\left|\begin{array}{ll} x'(t) & x''(t) \\ y'(t) & y''(t) \end{array}\right|\right|}{(\sqrt{x'(t)^2+y'(t)^2})^3}= \frac{\left|\left|\begin{array}{ll} & \\ & \ \ \ \ \ \ \ \ \ \ \end{array}\right|\right|}{(\sqrt{x'(t)^2+y'(t)^2})^3}\ \ (草稿纸写这个即可) k=(x(t)2+y(t)2 )3 x(t)y(t)x′′(t)y′′(t) =(x(t)2+y(t)2 )3              (草稿纸写这个即可)

t=1 ′ ' ′ ′ '' ′′
x x x 2 t + 2 = 4 2t+2=4 2t+2=4 2 2 2
y y y 3 / t = 3 3/t=3 3/t=3 − 3 / t 2 = − 3 -3/t^2=-3 3/t2=3

∣ 4     2 3 − 3 ∣ = − 18 →   18 4 2 + 3 2 = 5   →   5 3 = 125 k =    18    125 \begin{aligned} & \left|\begin{array}{ll} 4 & \ \ \ 2 \\ 3 & -3 \end{array}\right| = -18 \rightarrow \ 18\\ \\ & \sqrt{4^2+3^2}=5\ \rightarrow\ 5^3=125\\ \\ & k=\frac{\ \ 18}{\ \ 125} \end{aligned} 43   23 =18 1842+32 =5  53=125k=  125  18

解答完毕。

特别鸣谢:公式推导与表格法灵感来源于 C C L CCL CCL .

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需
MATLAB可以用多种方法进行二元二阶偏微分方程组的解。其中,一种方法是使用边值问题解函数BVP4C,这个函数可以帮助我们解一般形式的边值问题,但可能相对繁琐。另一种方法是使用1stOpt函数,这个函数对解偏微分方程组非常简单和快捷。具体的代码实现可以参考引用中的示例。 另外,根据引用中给出的ODEFunction,我们可以使用MATLAB的ODE解器来解决二元二阶偏微分方程组。在这个函数中,x'表示x的一阶导数,而x、y分别表示方程组中的两个未知函数。您可以根据具体的方程组形式将其代入ODEFunction中,并使用MATLAB的ODE解器进行解。 综上所述,MATLAB提供了多种方法来解二元二阶偏微分方程组,包括使用BVP4C函数、1stOpt函数以及ODE解器。具体使用哪种方法取决于您的需和方程组的形式。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Matlab基础应用学习笔记.md](https://download.csdn.net/download/weixin_52057528/88284511)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [助,matlab解二元二阶的常微分方程组](https://blog.csdn.net/weixin_39817176/article/details/115900918)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值