math:范数的物理意义-1范数,2范数

范数在数学中代表向量、矩阵和函数的'长度',用于衡量相似度。1-范数是向量元素绝对值之和,2-范数是欧几里得范数,矩阵范数描述了线性映射下向量长度的变化。函数的2范数是其平方的积分开方。在MATLAB中,不同范数有不同的计算函数。
摘要由CSDN通过智能技术生成

定义

范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。半范数可以为非零的矢量赋予零长度。

简单说就是: 向量,矩阵,函数的相似度(ps概率分布的相识度用 H ( a , b ) H(a,b) H(a,b) cross entropy 交叉熵来表示)

- 向量范数

1-范数:

∣ ∣ x ∣ ∣ 1 = ∑ i = 1 N ∣ x i ∣ ||x||_1 = \sum_{i=1}^N|x_i| x1=i=1Nxi ,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。

2-范数:

∣ ∣ x ∣ ∣ 2 = ∑ i = 1 N x i 2 ||\textbf{x}||_2 =\sqrt{\sum_{i=1}^Nx_i^2} x2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值