Idea I d e a
要讲欧拉筛,就要先了解欧拉函数 。
该算法可以在 O(n) O ( n ) 时间内求出 1 1 到 的所有书的 ϕ ϕ 值,在使用时需要用到以下三个性质:
- ϕ(p)=p−1 ϕ ( p ) = p − 1 , p p 是素数.
- , p p 是素数且 .
- ϕ(p∗i)=(p−1)∗ϕ(i) ϕ ( p ∗ i ) = ( p − 1 ) ∗ ϕ ( i ) , p p 是素数且 .
这三条性质应该比较简单,这里我就不证明了。
Code C o d e
void Prime(int n) {
memset(isPrime, true, sizeof isPrime);
phi[1] = 1; isPrime[1] = false;
for (int i = 2; i <= n; i++) {
if (isPrime[i]) {
prime[++tot] = i;
phi[i] = i - 1;
}
for (int j = 1; j <= tot; j++) {
int p = prime[j];
if (i * p > n) break;
isPrime[i * p] = false;
phi[i * p] = (i % p == 0 ? phi[i] * p : phi[i] * (p - 1));
if (i % p == 0) break;
}
}
}