【模板】欧拉函数的线性筛法

Idea I d e a

要讲欧拉筛,就要先了解欧拉函数

该算法可以在 O(n) O ( n ) 时间内求出 1 1 n 的所有书的 ϕ ϕ 值,在使用时需要用到以下三个性质:

  • ϕ(p)=p1 ϕ ( p ) = p − 1 p p 是素数.
  • ϕ(pi)=pϕ(i) p p 是素数且 imodp=0 .
  • ϕ(pi)=(p1)ϕ(i) ϕ ( p ∗ i ) = ( p − 1 ) ∗ ϕ ( i ) , p p 是素数且 imodp0 .

这三条性质应该比较简单,这里我就不证明了。

Code C o d e

void Prime(int n) {
    memset(isPrime, true, sizeof isPrime);
    phi[1] = 1; isPrime[1] = false;
    for (int i = 2; i <= n; i++) {
        if (isPrime[i]) {
            prime[++tot] = i;
            phi[i] = i - 1;
        }
        for (int j = 1; j <= tot; j++) {
            int p = prime[j];
            if (i * p > n) break;
            isPrime[i * p] = false;
            phi[i * p] = (i % p == 0 ? phi[i] * p : phi[i] * (p - 1));
            if (i % p == 0) break;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值