简明 KL散度以及交叉熵和信息熵

一句话三者关系

信息熵完美编码,交叉熵不完美编码,相对熵是两者的差值。即:相对熵 = 交叉熵 - 信息熵。

什么是KL散度

  • KL散度的概念来源于概率论和信息论中。
  • KL散度又被称为:相对熵、互熵、鉴别信息、Kullback熵、Kullback-Leible散度(即KL散度的简写)。

如何理解KL散度

  • 在统计学意义上来说,KL散度可以用来衡量两个分布之间的差异程度。若两者差异越小,KL散度越小,反之亦反。当两分布一致时,其KL散度为0。
  • KL散度在信息论中的专业术语为相对熵。其可理解为编码系统对信息进行编码时所需要的平均附加信息量。

KL散度的应用

  • 正是因为其可以衡量两个分布之间的差异,在机器学习、深度学习领域中,KL散度被广泛运用于变分自编码器中(Variational AutoEncoder, 简称VAE)、EM算法(Expectation-Maximization Algorithm)、GAN网络中。

参考文献

  1. KL散度:https://hsinjhao.github.io/2019/05/22/KL-DivergenceIntroduction/
  2. KL散度和交叉熵的对比:https://www.zhihu.com/question/41252833

博主简介:
座右铭:始于兴趣,源于热爱,成于投入。
爱丁堡大学 人工智能专业。热爱读书和写作,虽然写得不好但还会一直写。喜爱电音的渣渣音乐家,手不是很残的业余画手,有点热心过头的朋友。
所有文章都在个人博客上:discover304.top
也有一些在 CSDN 上:discover304
公众号:白泽百泽(注:内容和博客是一样的)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白拾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值