一句话三者关系
信息熵完美编码,交叉熵不完美编码,相对熵是两者的差值。即:相对熵 = 交叉熵 - 信息熵。
什么是KL散度
- KL散度的概念来源于概率论和信息论中。
- KL散度又被称为:相对熵、互熵、鉴别信息、Kullback熵、Kullback-Leible散度(即KL散度的简写)。
如何理解KL散度
- 在统计学意义上来说,KL散度可以用来衡量两个分布之间的差异程度。若两者差异越小,KL散度越小,反之亦反。当两分布一致时,其KL散度为0。
- KL散度在信息论中的专业术语为相对熵。其可理解为编码系统对信息进行编码时所需要的平均附加信息量。
KL散度的应用
- 正是因为其可以衡量两个分布之间的差异,在机器学习、深度学习领域中,KL散度被广泛运用于变分自编码器中(Variational AutoEncoder, 简称VAE)、EM算法(Expectation-Maximization Algorithm)、GAN网络中。
参考文献
- KL散度:https://hsinjhao.github.io/2019/05/22/KL-DivergenceIntroduction/
- KL散度和交叉熵的对比:https://www.zhihu.com/question/41252833
博主简介:
座右铭:始于兴趣,源于热爱,成于投入。
爱丁堡大学 人工智能专业。热爱读书和写作,虽然写得不好但还会一直写。喜爱电音的渣渣音乐家,手不是很残的业余画手,有点热心过头的朋友。
所有文章都在个人博客上:discover304.top
也有一些在 CSDN 上:discover304
公众号:白泽百泽(注:内容和博客是一样的)