系统模型的几种表现形式(微分、差分及状态空间方程)

微分方程

d n z ( t ) d t n + a 1 d n − 1 z ( t ) d t n − 1 + a 2 d n − 2 z ( t ) d t n − 2 . . . + a n − 1 d n − 1 z ( t ) d t + a n z ( t ) = b 1 d m − 1 u ( t ) d t m − 1 + b 2 d t m − 2 u ( t ) d t m − 2 + . . . + b m − 1 d t m − 1 u ( t ) d t m − 1 + b m u ( t ) + e ( t ) {\huge\begin{matrix} \frac{d^nz(t)}{dt^n}+a_1\frac{d^{n-1}z(t)}{dt^{n-1}} +a_2\frac{d^{n-2}z(t)}{dt^{n-2}} ...+a_{n-1}\frac{d^{n-1}z(t)}{dt}+a_nz(t)&\\ = \\b_1\frac{d^{m-1}u(t)}{dt^{m-1}}+b_2\frac{dt^{m-2}u(t)}{dt^{m-2}} +...+b_{m-1}\frac{dt^{m-1}u(t)}{dt^{m-1}} +b_mu(t)+e(t)\end{matrix}} dtndnz(t)+a1dtn1dn1z(t)+a2dtn2dn2z(t)...+an1dtdn1z(t)+anz(t)=b1dtm1dm1u(t)+b2dtm2dtm2u(t)+...+bm1dtm1dtm1u(t)+bmu(t)+e(t)
或:
z ( n ) ( t ) + a 1 z ( n − 1 ) ( t ) + a 2 z ( n − 2 ) ( t ) + . . . + a n − 1 z ( 1 ) ( t ) + a n z ( t ) = b 1 u ( m − 1 ) ( t ) + b 2 u ( m − 2 ) . . . + b m − 1 u ( 1 ) + b m u ( t ) + e ( t ) {\huge\begin{matrix}z^{(n)}(t)+a_1z^{(n-1)}(t)+a_2z^{(n-2)}(t)+...+a_{n-1}z^{(1)}(t)+a_nz(t) \\ =\\b_1u^{(m-1)}(t)+b_2u^{(m-2)}...+b_{m-1}u^{(1)}+b_mu(t) +e(t)\end{matrix}} z(n)(t)+a1z(n1)(t)+a2z(n2)(t)+...+an1z(1)(t)+anz(t)=b1u(m1)(t)+b2u(m2)...+bm1u(1)+bmu(t)+e(t)

差分方程

z ( k ) + a 1 z ( k − 1 ) + a 2 z ( k − 2 ) + . . . + a n a z ( k − n a ) = b 1 u ( k − 1 ) + b 2 u ( k − 2 ) + . . . + b n b u ( k − n b ) + e ( k ) {\huge\begin{matrix}z(k)+a_1z(k-1)+a_2z(k-2)+...+a_{n_a}z(k-n_a) \\ = \\b_1u(k-1)+b_2u(k-2)+...+b_{n_b}u(k-n_b)+e(k)\end{matrix}} z(k)+a1z(k1)+a2z(k2)+...+anaz(kna)=b1u(k1)+b2u(k2)+...+bnbu(knb)+e(k)

可令
{ A ( z − 1 ) = 1 + a 1 z − 1 + a 2 z − 2 + . . . + a n a z − n a B ( z − 1 ) = b 1 z − 1 + b 2 z − 2 + . . . b n b z − n b {\huge\left\{\begin{matrix}A(z^{-1}) & = &1+a_1z^{-1} +a_2z^{-2}+...+a_{n_a}z^{-n_a}\\ B(z^{-1}) & = &b_1z^{-1}+b_2z^{-2}+...b_{n_b}z^{-n_b}\end{matrix}\right.} A(z1)B(z1)==1+a1z1+a2z2+...+anaznab1z1+b2z2+...bnbznb

A ( z − 1 ) z ( k ) = B ( z − 1 ) u ( k ) + e ( k ) {\huge\begin{matrix}A(z^{-1})z(k)= B(z^{-1})u(k)+e(k)\end{matrix}} A(z1)z(k)=B(z1)u(k)+e(k)

状态空间方程

{ x ˙ ( t ) = A x ( t ) + b u ( t ) + F ω ( k ) z ( t ) = c x ( t ) + h ω ( t ) {\huge \left\{\begin{matrix} \mathbf{\dot{x}(t)} & = & \mathbf{Ax(t)}+\mathbf{b}u(t)+\mathbf{F\omega(k)} \\ z(t)& = &\mathbf{cx(t) }+h\omega(t)\end{matrix}\right.} x˙(t)z(t)==Ax(t)+bu(t)+Fω(k)cx(t)+(t)
或(离散形式):
{ x ( k + 1 ) = A x ( k ) + b u ( k ) + F ω ( k ) z ( k ) = c x ( k ) + h ω ( k ) {\huge \left\{\begin{matrix} \mathbf{{x}(k+1)} & = & \mathbf{Ax(k)}+\mathbf{b}u(k)+\mathbf{F\omega(k)} \\ z(k)& = &\mathbf{cx(k) }+h\omega(k)\end{matrix}\right.} x(k+1)z(k)==Ax(k)+bu(k)+Fω(k)cx(k)+(k)
其中, x ( ⋅ ) \mathbf{x(·)} x()为状态变量, ω ( ⋅ ) \mathbf{\omega(·)} ω() ω ( ⋅ ) \omega(·) ω()为噪声项。

  • 14
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值