从状态空间方程到Hankel矩阵(直接传递矩阵D=0)

离散形式状态空间方程

{ x ( ( k + 1 ) T ) = A x ( k T ) + B u ( k T ) y ( k t ) = C x ( k T ) {\large\left\{\begin{matrix}x((k+1)T) & = &Ax(kT)+Bu(kT) \\ y(kt)&= &Cx(kT)\end{matrix}\right.} { x((k+1)T)y(kt)==Ax(kT)+Bu(kT)Cx(kT)
对其进行z变换1,则

{ z X ( z ) − X ( 0 ) = A X ( z ) + B U ( z ) Y ( z ) = C X ( z ) {\large\left\{\begin{matrix}zX(z)-X(0) & = &AX(z)+BU(z) \\ Y(z)&= &CX(z)\end{matrix}\right.} { zX(z)X(0)Y(z)==AX(z)+BU(z)CX(z)
假设X(0)=0,则
{ z X ( z ) = A X ( z ) + B U ( z ) Y ( z ) = C X ( z ) {\large \left\{\begin{matrix}zX(z)& = &AX(z)+BU(z) \\ Y(z)&= &CX(z)\end{matrix}\right.} { zX(z)Y(z)==AX(z)+BU(z)CX(z)
从而,
Y ( z ) = C ( z I − A ) − 1 ⋅ B U ( z ) {\large Y(z)= C(zI-A)^{-1}·BU(z)} Y(z)=C(zIA)1BU(z)
传递函数可以表示为如下形式:
P ( z − 1 ) = [ A B C 0 ] = C ( z I − A ) − 1 B {\large P(z^{-1})= \left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]=C(zI-A)^{-1}B} P(z1)=[ACB0]=C(zIA)1B

因为:
( I − A z ) ∑ i = 0 ∞ ( A z ) i = ∑ i = 0 ∞ ( A z ) i − ∑ i = 0 ∞ ( A z ) i + 1 = ( A z ) 0 + ∑ i = 1 ∞ ( A z ) i − ∑ i = 0 ∞ ( A z ) i + 1 = I + ∑ i = 0 ∞ ( A z ) i + 1 − ∑ i = 0 ∞ (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值