Machine Learning 学习笔记

[google 机器学习链接](https://developers.google.com/machine-learning/crash-course/prereqs-and-prework

1.框架处理

(监督式)机器学习,标签,特征,样本,模型,回归与分类

2.深入了解机器学习

回归分析:权重(斜率)和偏差(截距)
训练:经验风险最小化;损失,平方损失,均方误差MSE

3.Reducing Loss

Itetative Approach;
Gradient Desent(GD);
Learning Rate(step);
Stochastic Gradient Desent(SGD);
Mini-batch Stochastic Gradient Desent(mini-batch SGD):损失和效率的折中

4.TensorFlow

Colaboratory 浏览器在线编程(无需配置);
Pandas: 数据分析和建模库;
TensorFlow 线性回归;
合成特征和离群值;
超参数:steps, batch size
方便变量:periods

5.泛化

过拟合:模型的复杂程度超出所需的复杂程度
奥卡姆剃刀理论
泛化边界,即统计化描述模型根据以下因素泛化到新数据的能力:模型的复杂程度,模型在处理训练数据方面的表现
训练集和测试集:测试集要足够大,不会反复使用相同测试集作假
基本假设:独立同分布,分布平稳,同一分布

6.训练集和测试集

测试集:1,足够大;2,能代表整个数据集
playground

阅读更多
文章标签: 机器学习
个人分类: 机器学习
想对作者说点什么? 我来说一句
相关热词

没有更多推荐了,返回首页

关闭
关闭
关闭