控制系统中,根据事件触发条件,证明事件触发执行器避免芝诺现象
在控制系统中,事件触发控制机制通过预设的事件触发条件来决定何时更新控制信号,从而实现节约资源并保持系统性能。芝诺现象是一种无限多次触发而导致执行器频繁执行的现象,通常在时间趋向于某个有限值时发生,进而导致系统无法完成控制任务或系统资源被耗尽。因此,要确保事件触发控制系统中不存在芝诺现象,我们需要证明触发条件不会导致无限多次触发。
证明事件触发执行器可以避免芝诺现象的思路:
1. 事件触发机制的设计
一般情况下,事件触发控制器的触发条件设定为某种状态误差或系统变量满足某个阈值。常用的事件触发条件形式如下:
f
(
e
(
t
)
)
≥
δ
f (e(t)) \geq\delta
f(e(t))≥δ
其中 ( e ( t ) e(t) e(t)) 是状态误差或其他相关变量, f f f 是误差函数,( δ \delta δ ) 是设定的阈值。这种条件意味着当 ( f ( e ( t ) ) f(e(t)) f(e(t)) ) 超过阈值 ( δ \delta δ ) 时,触发控制器更新控制信号。
2. 芝诺现象的定义
芝诺现象的关键特征是触发时间序列 (
t
k
t_k
tk ) 满足:
lim
k
→
∞
t
k
=
T
<
∞
\lim_{k \to \infty} t_k = T < \infty
k→∞limtk=T<∞
即在有限时间 (
T
T
T ) 内发生了无限多次触发。为了避免芝诺现象,必须证明在给定触发条件下,任意两次触发时间之间的最小间隔是有界的,即存在 (
τ
>
0
\tau > 0
τ>0) 满足:
t
k
+
1
−
t
k
≥
τ
t_{k+1} - t_k \geq \tau
tk+1−tk≥τ
从而保证在有限时间内最多发生有限次触发。
3. 证明思路
为证明系统能够避免芝诺现象,可以采用以下分析方法:
-
误差函数的衰减性:设计误差函数 ( f ( e ( t ) ) f(e(t)) f(e(t))) 使得它在每次触发后都会有足够的衰减,保证误差在触发后有一个恢复期。在这种情况下,误差在每次触发后均需一定的时间才会达到触发条件。因此可以得到一个最小触发间隔。
-
构造最小触发间隔 ( τ \tau τ):假设触发条件 ( f ( e ( t ) ) ≥ δ f(e(t)) \geq \delta f(e(t))≥δ ) 满足 Lipschitz 连续条件或其他有界增速条件,即误差的变化率是有限的,则可以推导出触发间隔不会无限缩短,从而存在一个下界 ( τ > 0 \tau > 0 τ>0 )。
-
累积误差限制:在某些事件触发控制器中,可以证明每次触发后的状态误差是逐渐减少的,即误差 ( e ( t ) e(t) e(t) ) 收敛于某个小范围。这表明系统在达到稳定状态前的触发次数是有限的,因此不会在有限时间内发生无限次触发。
4. 结论
如果触发条件 ( f ( e ( t ) ) ≥ δ f(e(t)) \geq \delta f(e(t))≥δ) 的设计能够保证存在一个最小触发间隔 ( τ > 0 \tau > 0 τ>0 ),即系统在任意时间点 ( t k t_k tk) 之后必须等待至少 ( τ \tau τ) 时间后才可能再次触发,则可以证明系统不会发生芝诺现象。
最小间隔 τ \tau τ的构建方法
一般来说,事件触发机制会设计成以下形式的触发条件:
f
(
e
(
t
)
)
≥
δ
f(e(t)) \geq \delta
f(e(t))≥δ
其中:
- ( e ( t ) e(t) e(t) ) 是系统状态误差(例如 ( e ( t ) = x ( t ) − x ∗ ( t ) ) e(t) = x(t) - x^*(t) ) e(t)=x(t)−x∗(t)))。
- ( f ( e ( t ) ) f(e(t)) f(e(t))) 是一个误差函数,用于判断误差是否超过阈值。
- ( δ \delta δ) 是设定的触发阈值,当 ( f ( e ( t ) ) ≥ δ f(e(t)) \geq \delta f(e(t))≥δ) 时触发控制信号更新。
为确保系统避免芝诺现象,需要保证在每次触发后,误差 ( e ( t ) e(t) e(t) ) 在短时间内不会再度触发,即存在一个时间 ( τ > 0 \tau > 0 τ>0) 满足任意两次触发的时间间隔不小于 ( τ \tau τ )。
要构造最小触发间隔 ( τ \tau τ),可以通过以下方法:
方法 1:利用误差函数的恢复特性
触发条件触发后,控制信号更新,通常会使误差 ( e(t) ) 恢复到较小的初始值。因此,可以分析误差 ( e(t) ) 从较小值增长到触发阈值所需的时间。
-
假设误差的动态变化有界:假设误差函数 ( e(t) ) 的变化率是有限的,比如 ( ∣ e ˙ ( t ) ∣ ≤ L |\dot{e}(t)| \leq L ∣e˙(t)∣≤L ),其中 ( L ) 是误差的最大变化率。
-
估计触发条件达到的时间:如果在上一次触发时,误差被重置到 ( f ( e ( t ) ) < δ f(e(t)) < \delta f(e(t))<δ ),则误差从 ( e(t) = 0 ) 增长到触发阈值 ( δ \delta δ ) 至少需要时间:
τ = δ L \tau = \frac{\delta}{L} τ=Lδ这样可以保证在这段时间内不会发生新的触发,因此构成了最小触发间隔。
方法 2:通过Lyapunov稳定性分析构建
在更一般的事件触发控制设计中,可以利用 Lyapunov 函数来分析误差的收敛性,从而构建一个最小触发间隔。
-
选取Lyapunov函数:设选定一个 Lyapunov 函数 ( V(e(t)) ),该函数用于描述误差的能量(或广义能量)。
-
分析触发后的Lyapunov函数变化:若系统在触发时刻 ( t_k ) 更新控制信号,那么在 ( t_k ) 之后的一小段时间内,Lyapunov 函数 ( V(e(t)) ) 会减小。
-
构建触发间隔条件:基于 ( V(e(t)) ) 减小的速率,可以计算从 ( V(e(t)) ) 减小到再次接近触发阈值所需的时间,从而得到一个时间下界 ( τ \tau τ ),保证在此期间内误差不会再次触发。
在实际控制系统中,环境中的噪声、模型不确定性可能会影响误差的动态变化,因此可以适当增加 ( τ \tau τ ) 以提高鲁棒性。
其中,详细解释一下方法二中的Lyapunov 函数法构造最小触发间隔 ( τ \tau τ ) 的具体过程。
假设我们使用 Lyapunov 函数设计的事件触发条件为:
f
(
e
(
t
)
)
≥
δ
f(e(t)) \geq \delta
f(e(t))≥δ
其中 ( f ( e ( t ) ) f(e(t)) f(e(t)) ) 通常是 Lyapunov 函数的某种变化形式,比如 ( f ( e ( t ) ) = V ( e ( t ) ) f(e(t)) = V(e(t)) f(e(t))=V(e(t)) ) 或** f ( e ( t ) ) / δ = V ( e ( t ) ) f(e(t))/{\delta} = {V}(e(t)) f(e(t))/δ=V(e(t))**,( δ \delta δ ) 是触发阈值。
我们假设每次触发后 ( V ( e ( t ) ) V(e(t)) V(e(t)) ) 会降低,并且在触发后的一个小时间段内不会立即达到触发阈值,从而存在一个时间间隔 ( τ \tau τ ) 保证在此期间内不会触发。
分析 Lyapunov 函数的变化率
设触发时刻为 ( t k t_k tk ),在触发时刻 ( t k t_k tk ) 后控制信号立即更新,因此 ( e ( t ) e(t) e(t) ) 会缩小,使得 ( V ( e ( t k ) ) < δ V(e(t_k)) < \delta V(e(tk))<δ )。
为了估计下次触发前的最小时间间隔 ( τ \tau τ ),可以分析 Lyapunov 函数 ( V ( e ( t ) ) V(e(t)) V(e(t)) ) 从 ( V ( e ( t k ) ) V(e(t_k)) V(e(tk)) ) 增长到触发阈值 ( δ \delta δ ) 所需的时间。
假设 Lyapunov 函数的导数 (
V
˙
(
e
(
t
)
)
\dot{V}(e(t))
V˙(e(t)) ) 满足以下不等式:
V
˙
(
e
(
t
)
)
≤
−
α
V
(
e
(
t
)
)
+
β
\dot{V}(e(t)) \leq -\alpha V(e(t)) + \beta
V˙(e(t))≤−αV(e(t))+β
其中 ( α > 0 \alpha > 0 α>0) 和 ( β ≥ 0 \beta \geq 0 β≥0) 是常数。该不等式表示 Lyapunov 函数 ( V ( e ( t ) ) V(e(t)) V(e(t)) ) 的变化率被限制在一定范围内。
Lyapunov 函数恢复到阈值所需的时间
在触发时刻 ( t k t_k tk ) 后,假设 Lyapunov 函数 ( V ( e ( t k ) ) V(e(t_k)) V(e(tk))) 被重置到小于阈值 ( δ \delta δ),即 ( V ( e ( t k ) ) < δ V(e(t_k)) < \delta V(e(tk))<δ )。根据 ( V ˙ ( e ( t ) ) ≤ − α V ( e ( t ) ) + β \dot{V}(e(t)) \leq -\alpha V(e(t)) + \beta V˙(e(t))≤−αV(e(t))+β ),可以得到 ( V ( e ( t ) ) V(e(t)) V(e(t)) ) 增长到 ( δ \delta δ ) 所需的时间。
对 (
V
˙
(
e
(
t
)
)
≤
−
α
V
(
e
(
t
)
)
+
β
\dot{V}(e(t)) \leq -\alpha V(e(t)) + \beta
V˙(e(t))≤−αV(e(t))+β) 两边积分,可以得出
V
(
e
(
t
)
)
=
(
V
(
e
(
t
k
)
)
−
β
α
)
e
−
α
(
t
−
t
k
)
+
β
α
V ( e(t) )=\left( V ( e ( t_{k} ) )-\frac{\beta} {\alpha} \right) e^{-\alpha( t-t_{k} )}+\frac{\beta} {\alpha}
V(e(t))=(V(e(tk))−αβ)e−α(t−tk)+αβ
计算达到触发阈值所需的时间 ( τ \tau τ )
将
τ
=
t
−
t
k
\tau =t -t_k
τ=t−tk代入
V
(
e
(
t
)
)
=
(
V
(
e
(
t
k
)
)
−
β
α
)
e
−
α
(
τ
)
+
β
α
V ( e(t) )=\left( V ( e ( t_{k} ) )-\frac{\beta} {\alpha} \right) e^{-\alpha(\tau )}+\frac{\beta} {\alpha}
V(e(t))=(V(e(tk))−αβ)e−α(τ)+αβ
代入 f ( e ( t ) ) / δ = V ( e ( t ) ) > 1 f(e(t))/{\delta} = {V}(e(t))>1 f(e(t))/δ=V(e(t))>1,可以得出 τ \tau τ的具体公式范围,证明其大于零 ( τ > 0 \tau > 0 τ>0 )即可以得出避免芝诺现象的结论