python numpy np.exp()函数

def exp(x, *args, **kwargs): # real signature unknown; NOTE: unreliably restored from __doc__ 
    """
    exp(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
    
    Calculate the exponential of all elements in the input array.
    计算输入数组中所有元素的指数。
    
    Parameters
    ----------
    x : array_like
        Input values.
    out : ndarray, None, or tuple of ndarray and None, optional
        A location into which the result is stored. If provided, it must have
        a shape that the inputs broadcast to. If not provided or `None`,
        a freshly-allocated array is returned. A tuple (possible only as a
        keyword argument) must have length equal to the number of outputs.
    where : array_like, optional
        Values of True indicate to calculate the ufunc at that position, values
        of False indicate to leave the value in the output alone.
    **kwargs
        For other keyword-only arguments, see the
        :ref:`ufunc docs <ufuncs.kwargs>`.
    
    Returns
    -------
    out : ndarray or scalar
        Output array, element-wise exponential of `x`.
        This is a scalar if `x` is a scalar.
        输出数组,`x`的按元素指数。
         如果x是标量,则这是标量。
    
    See Also
    --------
    expm1 : Calculate ``exp(x) - 1`` for all elements in the array.
    exp2  : Calculate ``2**x`` for all elements in the array.
    
    Notes
    -----
    The irrational number ``e`` is also known as Euler's number.  It is
    approximately 2.718281, and is the base of the natural logarithm,
    ``ln`` (this means that, if :math:`x = \ln y = \log_e y`,
    then :math:`e^x = y`. For real input, ``exp(x)`` is always positive.
    
    无理数``e''也称为欧拉数。 
    它大约是2.718281,并且是自然对数``ln''的底数
    (这意味着,如果:math:`x = \ ln y = \ log_e y`,那么:math:`e ^ x = y 
    对于实际输入,exp(x)始终为正。
    
    For complex arguments, ``x = a + ib``, we can write
    :math:`e^x = e^a e^{ib}`.  The first term, :math:`e^a`, is already
    known (it is the real argument, described above).  The second term,
    :math:`e^{ib}`, is :math:`\cos b + i \sin b`, a function with
    magnitude 1 and a periodic phase.

	对于复杂的参数x = a + ib,我们可以写成:math:`e ^ x = e ^ a e ^ {ib}`。 
	第一项:math:`e ^ a`是已知的(这是上述的实参)。 第二项e ^ {ib}`是\ cos b + i \ sin b`,这是一个具有幅度1和周期相位的函数。
    
    References
    ----------
    .. [1] Wikipedia, "Exponential function",
           http://en.wikipedia.org/wiki/Exponential_function
    .. [2] M. Abramovitz and I. A. Stegun, "Handbook of Mathematical Functions
           with Formulas, Graphs, and Mathematical Tables," Dover, 1964, p. 69,
           http://www.math.sfu.ca/~cbm/aands/page_69.htm
    
    Examples
    --------
    Plot the magnitude and phase of ``exp(x)`` in the complex plane:
    在复平面上绘制``exp(x)``的大小和相位:
    
    >>> import matplotlib.pyplot as plt
    
    >>> x = np.linspace(-2*np.pi, 2*np.pi, 100)
    >>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane
    >>> out = np.exp(xx)
    
    >>> plt.subplot(121)
    >>> plt.imshow(np.abs(out),
    ...            extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='gray')
    >>> plt.title('Magnitude of exp(x)')
    
    >>> plt.subplot(122)
    >>> plt.imshow(np.angle(out),
    ...            extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='hsv')
    >>> plt.title('Phase (angle) of exp(x)')
    >>> plt.show()
    """
    pass

示例结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dontla

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值