Deepseek Api 对话补全(Chat Completion)、补全(Completion)、FIM补全(Fill-in-Middle,Beta)区别

DeepSeek API中的不同接口针对不同场景设计,主要区别如下:

1. 对话补全(Chat Completion)

  • 输入结构:使用messages数组,包含多轮对话消息(用户/助理角色)。
  • 上下文处理:自动维护对话历史,适合多轮交互。
  • 适用场景:聊天机器人、多轮对话系统。
  • 示例:客服对话、连续问答。

2. 补全(Completion)

  • 输入结构:单条prompt文本,无角色区分。
  • 上下文处理:单次输入,不保留历史。
  • 适用场景:单轮文本生成,如文章续写、问答。
  • 示例:生成故事开头、回答独立问题。

3. FIM补全(Fill-in-Middle,Beta)

  • 输入结构:需指定文本prefix(前缀)和suffix(后缀),模型填充中间部分。
  • 上下文处理:专注于中间内容的生成,适合插入式补全。
  • 适用场景:代码补全、文本编辑(如填充函数体)。
  • 示例:补全代码中的缺失逻辑。

主要对比

功能对话补全补全FIM补全
输入格式messages数组prompt文本prefix + suffix
上下文支持多轮单次单次(指定位置)
典型应用聊天机器人文本生成代码/文本中间补全
输出位置续接对话末尾续接prompt末尾填充prefix与suffix间

使用建议

  • 多轮交互 → 对话补全
  • 单次生成 → 补全
  • 中间插入 → FIM补全(如代码函数补全)

具体参数请参考官方文档

ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍
ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ        ‌‍ᅟᅠ

### 调试 `chat_completion_request` 函数 为了正确实现和调用带有 `messages` 参数以及可选的 `tools`、`tool_choice` 和 `model` 参数的 `chat_completion_request` 函数,可以按照以下方式构建代码逻辑: #### 实现细节 以下是基于站内引用的内容所设计的一个可能的 Python 实现方案。此函数通过 HTTP 请求向 Chat Completions API 发送数据,并处理返回的结果。 ```python import requests def chat_completion_request(messages, model="gpt-3.5-turbo", tools=None, tool_choice=None, logprobs=None): """ 向 Chat Completions API 发起请求。 :param messages: 对话历史记录数组,包含多个字典对象 {role: ..., content: ...}。 :param model: 使用的语言模型名称,默认为 gpt-3.5-turbo。 :param tools: 工具列表,支持的功能集合。 :param tool_choice: 工具选择策略,可设置为 None, 'auto' 或自定义配置。 :param logprobs: 返回前 N 个 token 的对数概率,默认为 null。 :return: 解析后的 API 响应结果。 """ url = "https://api.example.com/v1/chat/completions" headers = { "Content-Type": "application/json", "Authorization": "Bearer YOUR_API_KEY" # 替换为实际的 API 密钥 } data = { "messages": messages, "model": model } if tools is not None: data["tools"] = tools if tool_choice is not None: data["tool_choice"] = tool_choice if logprobs is not None: data["logprobs"] = logprobs response = requests.post(url, json=data, headers=headers) if response.status_code != 200: raise Exception(f"Request failed with status code {response.status_code}: {response.text}") result = response.json() parsed_tool_calls = result.get("choices")[0].get("message").get("tool_calls") # 提取工具调用部分[^1] return result, parsed_tool_calls ``` 上述代码实现了以下几个功能: - **参数传递**:允许用户指定对话历史 (`messages`)、使用的模型 (`model`)、可用工具 (`tools`)、工具选择策略 (`tool_choice`) 和日志概率选项 (`logprobs`)- **HTTP 请求封装**:使用 `requests` 库发起 POST 请求到目标 API 地址。 - **错误处理**:当 API 返回状态码不是 200 时抛出异常以便调试。 - **解析响应**:提取并返回完整的 JSON 结果以及特定字段如 `tool_calls`。 #### 关键点说明 1. **工具替代机制**:旧版中的 `functions` 和 `function_call` 已被废弃,新的接口引入了更灵活的 `tools` 和 `tool_choice` 配置方法[^2]。 2. **扩展性考虑**:如果未来需要增加更多参数(例如温度调节器 `temperature`),可以在现有基础上轻松扩展而无需重构核心逻辑。 3. **性能优化建议**:对于高频率调用场景,推荐缓存常用模型加载过程以减少延迟时间。 --- ### 示例调用 下面展示了一个具体的例子来演示如何调用上面定义好的 `chat_completion_request` 方法: ```python if __name__ == "__main__": messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "What's the weather like today?"}, {"role": "assistant", "content": "Let me check that for you."} ] tools = ["weather_api"] tool_choice = "auto" try: api_response, tool_calls = chat_completion_request( messages=messages, model="gpt-4", tools=tools, tool_choice=tool_choice, logprobs=5 ) print("API Response:", api_response) print("Tool Calls:", tool_calls) except Exception as e: print("Error occurred:", str(e)) ``` 在此示例中,我们模拟了一次关于天气查询的任务交互流程,指定了所需的工具集及自动化的决策模式。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dontla

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值