python sklearn.neural_network.MLPClassifier() 神经网络改变模型复杂度的四种方法

  • MLPClassifier() 改变模型复杂度的四种方法
  1. 调整神经网络每一个隐藏层上的节点数
  2. 调节神经网络隐藏层的层数
  3. 调节activation的方式
  4. 通过调整alpha值来改变模型正则化的程度(增大alpha会降低模型复杂度, 模型会变得更加简单)

官方doc:

Init signature: 
MLPClassifier(
    hidden_layer_sizes=(100,),
    activation='relu',
    solver='adam',
    alpha=0.0001,
    batch_size='auto',
    learning_rate='constant',
    learning_rate_init=0.001,
    power_t=0.5,
    max_iter=200,
    shuffle=True,
    random_state=None,
    tol=0.0001,
    verbose=False,
    warm_start=False,
    momentum=0.9,
    nesterovs_momentum=True,
    early_stopping=False,
    validation_fraction=0.1,
    beta_1=0.9,
    beta_2=0.999,
    epsilon=1e-08,
    n_iter_no_change=10,
)
Docstring:     
Multi-layer Perceptron classifier.

This model optimizes the log-loss function using LBFGS or stochastic
gradient descent.

.. versionadded:: 0.18

Parameters
----------
hidden_layer_sizes : tuple, length = n_layers - 2, default (100,)
    The ith element represents the number of neurons in the ith
    hidden layer.

activation : {'identity', 'logistic', 'tanh', 'relu'}, default 'relu'
    Activation function for the hidden layer.

    - 'identity', no-op activation, useful to implement linear bottleneck,
      returns f(x) = x

    - 'logistic', the logistic sigmoid function,
      returns f(x) = 1 / (1 + exp(-x)).

    - 'tanh', the hyperbolic tan function,
      returns f(x) = tanh(x).

    - 'relu', the rectified linear unit function,
      returns f(x) = max(0, x)

solver : {'lbfgs', 'sgd', 'adam'}, default 'adam'
    The solver for weight optimization.

    - 'lbfgs' is an optimizer in the family of quasi-Newton methods.

    - 'sgd' refers to stochastic gradient descent.

    - 'adam' refers to a stochastic gradient-based optimizer proposed
      by Kingma, Diederik, and Jimmy Ba

    Note: The default solver 'adam' works pretty well on relatively
    large datasets (with thousands of training samples or more) in terms of
    both training time and validation score.
    For small datasets, however, 'lbfgs' can converge faster and perform
    better.

alpha : float, optional, default 0.0001
    L2 penalty (regularization term) parameter.

batch_size : int, optional, default 'auto'
    Size of minibatches for stochastic optimizers.
    If the solver is 'lbfgs', the classifier will not use minibatch.
    When set to "auto", `batch_size=min(200, n_samples)`

learning_rate : {'constant', 'invscaling', 'adaptive'}, default 'constant'
    Learning rate schedule for weight updates.

    - 'constant' is a constant learning rate given by
      'learning_rate_init'.

    - 'invscaling' gradually decreases the learning rate at each
      time step 't' using an inverse scaling exponent of 'power_t'.
      effective_learning_rate = learning_rate_init / pow(t, power_t)

    - 'adaptive' keeps the learning rate constant to
      'learning_rate_init' as long as training loss keeps decreasing.
      Each time two consecutive epochs fail to decrease training loss by at
      least tol, or fail to increase validation score by at least tol if
      'early_stopping' is on, the current learning rate is divided by 5.

    Only used when ``solver='sgd'``.

learning_rate_init : double, optional, default 0.001
    The initial learning rate used. It controls the step-size
    in updating the weights. Only used when solver='sgd' or 'adam'.

power_t : double, optional, default 0.5
    The exponent for inverse scaling learning rate.
    It is used in updating effective learning rate when the learning_rate
    is set to 'invscaling'. Only used when solver='sgd'.

max_iter : int, optional, default 200
    Maximum number of iterations. The solver iterates until convergence
    (determined by 'tol') or this number of iterations. For stochastic
    solvers ('sgd', 'adam'), note that this determines the number of epochs
    (how many times each data point will be used), not the number of
    gradient steps.

shuffle : bool, optional, default True
    Whether to shuffle samples in each iteration. Only used when
    solver='sgd' or 'adam'.

random_state : int, RandomState instance or None, optional, default None
    If int, random_state is the seed used by the random number generator;
    If RandomState instance, random_state is the random number generator;
    If None, the random number generator is the RandomState instance used
    by `np.random`.

tol : float, optional, default 1e-4
    Tolerance for the optimization. When the loss or score is not improving
    by at least ``tol`` for ``n_iter_no_change`` consecutive iterations,
    unless ``learning_rate`` is set to 'adaptive', convergence is
    considered to be reached and training stops.

verbose : bool, optional, default False
    Whether to print progress messages to stdout.

warm_start : bool, optional, default False
    When set to True, reuse the solution of the previous
    call to fit as initialization, otherwise, just erase the
    previous solution. See :term:`the Glossary <warm_start>`.

momentum : float, default 0.9
    Momentum for gradient descent update. Should be between 0 and 1. Only
    used when solver='sgd'.

nesterovs_momentum : boolean, default True
    Whether to use Nesterov's momentum. Only used when solver='sgd' and
    momentum > 0.

early_stopping : bool, default False
    Whether to use early stopping to terminate training when validation
    score is not improving. If set to true, it will automatically set
    aside 10% of training data as validation and terminate training when
    validation score is not improving by at least tol for
    ``n_iter_no_change`` consecutive epochs. The split is stratified,
    except in a multilabel setting.
    Only effective when solver='sgd' or 'adam'

validation_fraction : float, optional, default 0.1
    The proportion of training data to set aside as validation set for
    early stopping. Must be between 0 and 1.
    Only used if early_stopping is True

beta_1 : float, optional, default 0.9
    Exponential decay rate for estimates of first moment vector in adam,
    should be in [0, 1). Only used when solver='adam'

beta_2 : float, optional, default 0.999
    Exponential decay rate for estimates of second moment vector in adam,
    should be in [0, 1). Only used when solver='adam'

epsilon : float, optional, default 1e-8
    Value for numerical stability in adam. Only used when solver='adam'

n_iter_no_change : int, optional, default 10
    Maximum number of epochs to not meet ``tol`` improvement.
    Only effective when solver='sgd' or 'adam'

    .. versionadded:: 0.20

Attributes
----------
classes_ : array or list of array of shape (n_classes,)
    Class labels for each output.

loss_ : float
    The current loss computed with the loss function.

coefs_ : list, length n_layers - 1
    The ith element in the list represents the weight matrix corresponding
    to layer i.

intercepts_ : list, length n_layers - 1
    The ith element in the list represents the bias vector corresponding to
    layer i + 1.

n_iter_ : int,
    The number of iterations the solver has ran.

n_layers_ : int
    Number of layers.

n_outputs_ : int
    Number of outputs.

out_activation_ : string
    Name of the output activation function.

Notes
-----
MLPClassifier trains iteratively since at each time step
the partial derivatives of the loss function with respect to the model
parameters are computed to update the parameters.

It can also have a regularization term added to the loss function
that shrinks model parameters to prevent overfitting.

This implementation works with data represented as dense numpy arrays or
sparse scipy arrays of floating point values.

References
----------
Hinton, Geoffrey E.
    "Connectionist learning procedures." Artificial intelligence 40.1
    (1989): 185-234.

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of
    training deep feedforward neural networks." International Conference
    on Artificial Intelligence and Statistics. 2010.

He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level
    performance on imagenet classification." arXiv preprint
    arXiv:1502.01852 (2015).

Kingma, Diederik, and Jimmy Ba. "Adam: A method for stochastic
    optimization." arXiv preprint arXiv:1412.6980 (2014).
File:           c:\users\huawei\appdata\local\programs\python\python36\lib\site-packages\sklearn\neural_network\multilayer_perceptron.py
Type:           ABCMeta
Subclasses:     
<think>好的,我现在需要帮助用户解决如何正确使用BPNeuralNetwork类的问题。首先,用户提到的是从models.bp_neural_network中导入这个类,所以我需要先假设这个类的结构是怎样的。通常,一个BP神经网络的类应该包含初始化方法、训练函数和预测函数。 接下来,我需要回想一下常见的BP神经网络实现方式。根据引用[1],使用newff函数创建网络时指定了神经元个数,所以在初始化类的时候可能需要参数比如输入层、隐藏层、输出层的节点数。激活函数也是一个重要部分,通常隐藏层会用Sigmoid或ReLU,输出层可能用线性或者Sigmoid,具体看是分类还是回归问题。 然后,用户可能需要进行数据预处理。标准化或归一化是常见的步骤,这有助于提升训练效果。引用[3]提到了BN层,但这里可能用户没有使用BN,不过数据预处理仍然是必要的。 训练过程中,需要设置学习率、迭代次数、损失函数等参数。引用[2]提到RPROP算法,但如果是标准的BP,可能用的是梯度下降。此外,引用[3]还提到训练时启用model.train()来处理dropout,所以如果类中有dropout或BN,需要确保在训练和评估时切换模式。 接下来,我需要考虑代码示例的结构。先导入类,然后准备数据,分割训练集和测试集,标准化处理。接着实例化模型,设置参数,进行训练,最后预测并评估。可能还需要可视化训练过程中的损失变化,帮助用户理解训练效果。 用户的问题还可能涉及常见错误,比如数据未标准化导致收敛慢,或参数设置不当。需要提醒用户注意这些点。此外,引用[4]中的梯度计算可能涉及到反向传播的实现,但用户可能不需要自己写这部分,只要调用正确的方法即可。 最后,生成的相关问题需要围绕使用中的其他方面,比如参数调优、数据预处理、过拟合处理等,这样用户如果有进一步的问题可以自行参考。</think>### BPNeuralNetwork类的使用指南 #### 1. 模型导入与初始化 ```python from models.bp_neural_network import BPNeuralNetwork # 初始化参数示例 input_nodes = 4 # 输入层神经元数(对应特征维度) hidden_nodes = 9 # 隐藏层神经元数,参考newff函数的参数设置[^1] output_nodes = 1 # 输出层神经元数 learning_rate = 0.1 # 学习率 model = BPNeuralNetwork( input_nodes=input_nodes, hidden_nodes=hidden_nodes, output_nodes=output_nodes, learning_rate=learning_rate ) ``` #### 2. 数据预处理要点 - 标准化处理(推荐Z-score标准化): $$ x_{norm} = \frac{x - \mu}{\sigma} $$ - 分类任务需对标签进行one-hot编码 - 使用sklearn的`train_test_split`划分数据集 #### 3. 模型训练流程 ```python # 典型训练参数配置 epochs = 1000 # 训练迭代次数 batch_size = 32 # 批处理大小 validation_split = 0.2 # 验证集比例 # 训练执行(需保持训练模式) model.train() # 启用BN/dropout等训练特性[^3] loss_history = model.fit( X_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=validation_split ) ``` #### 4. 预测与评估 ```python model.eval() # 切换评估模式[^3] predictions = model.predict(X_test) # 回归任务评估 from sklearn.metrics import mean_squared_error mse = mean_squared_error(y_test, predictions) print(f"测试集MSE: {mse:.4f}") ``` #### 5. 关键参数说明表 | 参数 | 推荐值 | 作用说明 | |------|--------|----------| | hidden_nodes | 5-20 | 隐藏层复杂度控制,需平衡欠/过拟合 | | learning_rate | 0.01-0.2 | 梯度下降步长,影响收敛速度[^2] | | activation | sigmoid | 隐藏层默认激活函数 | | momentum | 0.9 | 动量因子,加速收敛 | #### 6. 典型问题排查 1. **梯度消失**:减小网络深度或改用ReLU激活 2. **过拟合**: - 增加L2正则化项:$$ J_{new} = J + \lambda \sum w_i^2 $$ - 早停法(监控验证集损失) 3. **收敛缓慢**: - 检查数据标准化 - 调整学习率(参考RPROP算法思想)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dontla

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值