HDU1098  Ignatius's puzzle

Ignatius's puzzle

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5133    Accepted Submission(s): 3498


Problem Description
Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x)if
no exists that a,then print "no".

 

Input
The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.
 

Output
The output contains a string "no",if you can't find a,or you should output a line contains the a.More details in the Sample Output.
 

Sample Input
  
  
11 100 9999
Sample Output 22
  
  
no 43
 

Author
eddy
题目的关键是f(x)=5*x^13+13*x^5+k*a*x;
由于x取任何值都需要能被65整除.那么用数学归纳法.只需找到f(1)成立的a,并在假设f(x)成立的基础上,
证明f(x+1)也成立.
那么把f(x+1)展开,得到5* ( ( 13 0 )x^13 + (13 1 ) x^12 ...... .....+(13 13) x^0)+13*( ( 5 0 )x^5+(5 1 )x^4......其实就是二项式展开,这里就省略了 ......+ ( 5 5 )x^0 )+k*a*x+k*a;——————这里的( n m)表示组合数,相信学过2项式定理的朋友都能看明白.

然后提取出5*x^13+13*x^5+k*a*x
则f(x+1 ) = f (x) + 5*( (13 1 ) x^12 ...... .....+(13 13) x^0 )+ 13*( (5 1 )x^4+...........+ ( 5 5 )x^0 )+k*a;

很容易证明,除了5*(13 13) x^0 、13*( 5 5 )x^0 和k*a三项以外,其余各项都能被65整除.
那么也只要求出18+k*a能被65整除就可以了.
而f(1)也正好等于18+k*a

所以,只要找到a,使得18+k*a能被65整除,也就解决了这个题目.

#include<iostream>
using namespace std;
int main()
{
    int i,k;
    while(cin>>k)
    {
        for(i=0;i<66;i++)
        {
            if((k*i+18)%65==0)
            {
                cout<<i<<endl;
                break;
            }
        }
        if(i==66)
        cout<<"no"<<endl;
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值