Halcon深度学习分类模型

1.Halcon20之后深度学习支持CPU训练模型,没有money买显卡的小伙伴有福了。但是缺点也很明显,就是训练速度超级慢,推理效果也没有GPU好,不过学习用足够。
2.分类模型是Halcon深度学习最简单的模型,可以用在物品分类,缺陷检测等项目。
3.图像预处理和训练代码
*分类网络
dev_update_off ()
dev_close_window ()
WindowWidth := 800
WindowHeight := 600
dev_open_window_fit_size (0, 0, WindowWidth, WindowHeight, -1, -1, WindowHandle)
set_display_font (WindowHandle, 16, ‘mono’, ‘true’, ‘false’)
*训练原图路径
RawImageBaseFolder :=‘D:/训练图/’+ [‘U’,‘SR’,‘MR’,‘BR’,‘C’,‘D’,‘NG’]
*预处理数据存储路径
ExampleDataDir := ‘D:/classify_pill_defects_data’

  • Dataset directory basename for any outputs written by preprocess_dl_dataset.
    DataDirectoryBaseName := ExampleDataDir + ‘/dldataset_pill’


  • ** Set parameters ***

  • LabelSource for reading in the dataset.
    LabelSource := ‘last_folder’
  • Percentages for splitting the dataset.
    TrainingPercent := 70
    ValidationPercent := 15
  • Image dimensions the images are rescaled to during preprocessing.
    ImageWidth := 300
    ImageHeight := 300
    ImageNumChannels := 3
  • Further parameters for image preprocessing.
    NormalizationType := ‘none’
    DomainHandling := ‘full_domain’
  • In order to get a reproducible split we set a random seed.
  • This means that re-running the script results in the same split of DLDataset.
    SeedRand := 42

  • ** Read the labeled data and split it into train, validation and test ***

  • Set the random seed.
    set_system (‘seed_rand’, SeedRand)
  • Read the dataset with the procedure read_dl_dataset_classification.
  • Alternatively, you can read a DLDataset dictionary
  • as created by e.g., the MVTec Deep Learning Tool using read_dict().
    read_dl_dataset_classification (RawImageBaseFolder, LabelSource, DLDataset)
  • Generate the split.
    split_dl_dataset (DLDataset, TrainingPercent, ValidationPercent, [])

  • ** Preprocess the dataset ***

  • Create the output directory if it does not exist yet.
    file_exists (ExampleDataDir, FileExists)
    if (not FileExists)
    make_dir (ExampleDataDir)
    endif
  • Create preprocess parameters.
    create_dl_preprocess_param (‘classification’, ImageWidth, ImageHeight, ImageNumChannels, -127, 128, NormalizationType, DomainHandling, [], [], [], [], DLPreprocessParam)
  • Dataset directory for any outputs written by preprocess_dl_dataset.
    DataDirectory := DataDirectoryBaseName + ‘_’ + ImageWidth + ‘x’ + ImageHeight
  • Preprocess the dataset. This might take a few seconds.
    create_dict (GenParam)
    set_dict_tuple (GenParam, ‘overwrite_files’, true)
    preprocess_dl_dataset (DLDataset, DataDirectory, DLPreprocessParam, GenParam, DLDatasetFileName)
  • Store preprocess params separately in order to use it e.g. during inference.
    PreprocessParamFileBaseName := DataDirectory + ‘/dl_preprocess_param.hdict’
    write_dict (DLPreprocessParam, PreprocessParamFileBaseName, [], [])

  • ** Preview the preprocessed dataset ***

  • Before moving on to training, it is recommended to check the preprocessed dataset.
  • Display the DLSamples for 10 randomly selected train images.
    get_dict_tuple (DLDataset, ‘samples’, DatasetSamples)
    find_dl_samples (DatasetSamples, ‘split’, ‘train’, ‘match’, SampleIndices)
    tuple_shuffle (SampleIndices, ShuffledIndices)
    read_dl_samples (DLDataset, ShuffledIndices[0:9], DLSampleBatchDisplay)

create_dict (WindowHandleDict)
for Index := 0 to |DLSampleBatchDisplay| - 1 by 1
* Loop over samples in DLSampleBatchDisplay.
dev_display_dl_data (DLSampleBatchDisplay[Index], [], DLDataset, ‘classification_ground_truth’, [], WindowHandleDict)
Text := ‘Press Run (F5) to continue’
dev_disp_text (Text, ‘window’, ‘bottom’, ‘right’, ‘black’, [], [])
stop ()
endfor
*

  • Close windows that have been used for visualization.
    dev_close_window_dict (WindowHandleDict)

*检测电脑是否有GPU,如果无GPU则使用CPU训练
query_available_dl_devices ([‘runtime’,‘runtime’], [‘gpu’,‘cpu’], DLDeviceHandles)
if (|DLDeviceHandles| == 0)
throw (‘No supported device found to continue this example.’)
endif

  • Due to the filter used in query_available_dl_devices, the first device is a GPU, if available.
    DLDevice := DLDeviceHandles[0]
    get_dl_device_param (DLDevice, ‘type’, DLDeviceType)
    if (DLDeviceType == ‘cpu’)
    • The number of used threads may have an impact
    • on the training duration.
      NumThreadsTraining := 4
      set_system (‘thread_num’, NumThreadsTraining)
      endif

  • ** Set input and output paths ***

  • File path of the initialized model.
    ModelFileName := ‘pretrained_dl_classifier_compact.hdl’

  • File path of the preprocessed DLDataset.

  • Note: Adapt DataDirectory after preprocessing with another image size.
    DataDirectory := ExampleDataDir + ‘/dldataset_pill_300x300’
    DLDatasetFileName := DataDirectory + ‘/dl_dataset.hdict’
    DLPreprocessParamFileName := DataDirectory + ‘/dl_preprocess_param.hdict’

  • Output path of the best evaluated model.
    BestModelBaseName := ExampleDataDir + ‘/best_dl_model_classification’

  • Output path for the final trained model.
    FinalModelBaseName := ExampleDataDir + ‘/final_dl_model_classification’


  • ** Set basic parameters ***

  • The following parameters need to be adapted frequently.
  • Model parameters.
  • Batch size. In case this example is run on a GPU,
  • you can set BatchSize to ‘maximum’ and it will be
  • determined automatically.
    BatchSize := 64
  • Initial learning rate.
    InitialLearningRate := 0.001
  • Momentum should be high if batch size is small.
    Momentum := 0.9
  • Parameters used by train_dl_model.
  • Number of epochs to train the model.
    NumEpochs := 16
  • Evaluation interval (in epochs) to calculate evaluation measures on the validation split.
    EvaluationIntervalEpochs := 1
  • Change the learning rate in the following epochs, e.g. [4, 8, 12].
  • Set it to [] if the learning rate should not be changed.
    ChangeLearningRateEpochs := [4,8,12]
  • Change the learning rate to the following values, e.g. InitialLearningRate * [0.1, 0.01, 0.001].
  • The tuple has to be of the same length as ChangeLearningRateEpochs.
    ChangeLearningRateValues := InitialLearningRate * [0.1,0.01,0.001]

  • ** Set advanced parameters ***

  • The following parameters might need to be changed in rare cases.
  • Model parameter.
  • Set the weight prior.
    WeightPrior := 0.0005
  • Parameters used by train_dl_model.
  • Control whether training progress is displayed (true/false).
    EnableDisplay := true
  • Set a random seed for training.
    RandomSeed := 42
    set_system (‘seed_rand’, RandomSeed)
  • In order to obtain nearly deterministic training results on the same GPU
  • (system, driver, cuda-version) you could specify “cudnn_deterministic” as
  • “true”. Note, that this could slow down training a bit.
  • set_system (‘cudnn_deterministic’, ‘true’)
  • Set generic parameters of create_dl_train_param.
  • Please see the documentation of create_dl_train_param for an overview on all available parameters.
    GenParamName := []
    GenParamValue := []
  • Augmentation parameters.
  • If samples should be augmented during training, create the dict required by augment_dl_samples.
  • Here, we set the augmentation percentage and method.
    create_dict (AugmentationParam)
  • Percentage of samples to be augmented.
    set_dict_tuple (AugmentationParam, ‘augmentation_percentage’, 50)
  • Mirror images along row and column.
    set_dict_tuple (AugmentationParam, ‘mirror’, ‘rc’)
    GenParamName := [GenParamName,‘augment’]
    GenParamValue := [GenParamValue,AugmentationParam]
  • Change strategies.
  • It is possible to change model parameters during training.
  • Here, we change the learning rate if specified above.
    if (|ChangeLearningRateEpochs| > 0)
    create_dict (ChangeStrategy)
    • Specify the model parameter to be changed, here the learning rate.
      set_dict_tuple (ChangeStrategy, ‘model_param’, ‘learning_rate’)
    • Start the parameter value at ‘initial_value’.
      set_dict_tuple (ChangeStrategy, ‘initial_value’, InitialLearningRate)
    • Reduce the learning rate in the following epochs.
      set_dict_tuple (ChangeStrategy, ‘epochs’, ChangeLearningRateEpochs)
    • Reduce the learning rate to the following values.
      set_dict_tuple (ChangeStrategy, ‘values’, ChangeLearningRateValues)
    • Collect all change strategies as input.
      GenParamName := [GenParamName,‘change’]
      GenParamValue := [GenParamValue,ChangeStrategy]
      endif
  • Serialization strategies.
  • There are several options for saving intermediate models to disk (see create_dl_train_param).
  • Here, we save the best and the final model to the paths set above.
    create_dict (SerializationStrategy)
    set_dict_tuple (SerializationStrategy, ‘type’, ‘best’)
    set_dict_tuple (SerializationStrategy, ‘basename’, BestModelBaseName)
    GenParamName := [GenParamName,‘serialize’]
    GenParamValue := [GenParamValue,SerializationStrategy]
    create_dict (SerializationStrategy)
    set_dict_tuple (SerializationStrategy, ‘type’, ‘final’)
    set_dict_tuple (SerializationStrategy, ‘basename’, FinalModelBaseName)
    GenParamName := [GenParamName,‘serialize’]
    GenParamValue := [GenParamValue,SerializationStrategy]
  • Display parameters.
  • In this example, 20% of the training split are selected to display the
  • evaluation measure for the reduced training split during the training. A lower percentage
  • helps to speed up the evaluation/training. If the evaluation measure for the training split
  • shall not be displayed, set this value to 0 (default).
    SelectedPercentageTrainSamples := 20
  • Set the x-axis argument of the training plots.
    XAxisLabel := ‘epochs’
    create_dict (DisplayParam)
    set_dict_tuple (DisplayParam, ‘selected_percentage_train_samples’, SelectedPercentageTrainSamples)
    set_dict_tuple (DisplayParam, ‘x_axis_label’, XAxisLabel)
    GenParamName := [GenParamName,‘display’]
    GenParamValue := [GenParamValue,DisplayParam]

  • ** Read initial model and dataset ***

  • Check if all necessary files exist.
    check_data_availability (ExampleDataDir, DLDatasetFileName, DLPreprocessParamFileName)
  • Read in the model that was initialized during preprocessing.
    read_dl_model (ModelFileName, DLModelHandle)
  • Read in the preprocessed DLDataset file.
    read_dict (DLDatasetFileName, [], [], DLDataset)

  • ** Set model parameters ***

  • Set model hyper-parameters as specified in the settings above.
    set_dl_model_param (DLModelHandle, ‘learning_rate’, InitialLearningRate)
    set_dl_model_param (DLModelHandle, ‘momentum’, Momentum)
  • Set the class names for the model.
    get_dict_tuple (DLDataset, ‘class_names’, ClassNames)
    set_dl_model_param (DLModelHandle, ‘class_names’, ClassNames)
  • Get image dimensions from preprocess parameters and set them for the model.
    read_dict (DLPreprocessParamFileName, [], [], DLPreprocessParam)
    get_dict_tuple (DLPreprocessParam, ‘image_width’, ImageWidth)
    get_dict_tuple (DLPreprocessParam, ‘image_height’, ImageHeight)
    get_dict_tuple (DLPreprocessParam, ‘image_num_channels’, ImageNumChannels)
    set_dl_model_param (DLModelHandle, ‘image_dimensions’, [ImageWidth,ImageHeight,ImageNumChannels])
    if (BatchSize == ‘maximum’ and DLDeviceType == ‘gpu’)
    set_dl_model_param_max_gpu_batch_size (DLModelHandle, 100)
    else
    set_dl_model_param (DLModelHandle, ‘batch_size’, BatchSize)
    endif
  • When the batch size is determined, set the device.
    set_dl_model_param (DLModelHandle, ‘device’, DLDevice)
    if (|WeightPrior| > 0)
    set_dl_model_param (DLModelHandle, ‘weight_prior’, WeightPrior)
    endif
  • Set class weights to counteract unbalanced training data. In this example
  • we choose the default values, since the classes are evenly distributed in the dataset.
    tuple_gen_const (|ClassNames|, 1.0, ClassWeights)
    set_dl_model_param (DLModelHandle, ‘class_weights’, ClassWeights)

  • ** Train the model ***

  • Create training parameters.
    create_dl_train_param (DLModelHandle, NumEpochs, EvaluationIntervalEpochs, EnableDisplay, RandomSeed, GenParamName, GenParamValue, TrainParam)
  • Start the training by calling the training operator
  • train_dl_model_batch () within the following procedure.
    train_dl_model (DLDataset, DLModelHandle, TrainParam, 0, TrainResults, TrainInfos, EvaluationInfos)
  • Stop after the training has finished, before closing the windows.
    dev_disp_text (‘Press Run (F5) to continue’, ‘window’, ‘bottom’, ‘right’, ‘black’, [], [])
    stop ()
  • Close training windows.
    dev_close_window ()
    4.推理代码
    dev_update_off ()
    dev_close_window ()
    WindowWidth := 800
    WindowHeight := 600
    dev_open_window_fit_size (0, 0, WindowWidth, WindowHeight, -1, -1, WindowHandle)
    set_display_font (WindowHandle, 16, ‘mono’, ‘true’, ‘false’)
  • ** INFERENCE **

*检测电脑是否有GPU,如果无GPU则使用CPU推理
query_available_dl_devices ([‘runtime’,‘runtime’], [‘gpu’,‘cpu’], DLDeviceHandles)
if (|DLDeviceHandles| == 0)
throw (‘No supported device found to continue this example.’)
endif

  • Due to the filter used in query_available_dl_devices, the first device is a GPU, if available.
    DLDevice := DLDeviceHandles[0]

*总路径
ExampleDataDir := ‘D:/classify_pill_defects_data’

  • Dataset directory basename for any outputs written by preprocess_dl_dataset.
    DataDirectoryBaseName := ExampleDataDir + ‘/dldataset_pill’

  • File name of the dict containing parameters used for preprocessing.

  • Note: Adapt DataDirectory after preprocessing with another image size.
    DataDirectory := ExampleDataDir + ‘/dldataset_pill_300x300’
    PreprocessParamFileName := DataDirectory + ‘/dl_preprocess_param.hdict’

  • File name of the finetuned object detection model.
    RetrainedModelFileName := ExampleDataDir + ‘/best_dl_model_classification.hdl’

  • Batch Size used during inference.
    BatchSizeInference := 1


  • ** Inference ***

  • Check if all necessary files exist.
    check_data_availability (ExampleDataDir, PreprocessParamFileName, RetrainedModelFileName, false)
  • Read in the retrained model.
    read_dl_model (RetrainedModelFileName, DLModelHandle)
  • Set the batch size.
    set_dl_model_param (DLModelHandle, ‘batch_size’, BatchSizeInference)
  • Initialize the model for inference.
    set_dl_model_param (DLModelHandle, ‘device’, DLDevice)
  • Get the class names and IDs from the model.
    get_dl_model_param (DLModelHandle, ‘class_names’, ClassNames)
    get_dl_model_param (DLModelHandle, ‘class_ids’, ClassIDs)
  • Get the parameters used for preprocessing.
    read_dict (PreprocessParamFileName, [], [], DLPreprocessParam)
  • Create window dictionary for displaying results.
    create_dict (WindowHandleDict)
  • Create dictionary with dataset parameters necessary for displaying.
    create_dict (DLDataInfo)
    set_dict_tuple (DLDataInfo, ‘class_names’, ClassNames)
    set_dict_tuple (DLDataInfo, ‘class_ids’, ClassIDs)
  • Set generic parameters for visualization.
    create_dict (GenParam)
    set_dict_tuple (GenParam, ‘scale_windows’, 1.1)

list_files (‘E:/NG’, [‘files’,‘follow_links’], ImageFiles)
tuple_regexp_select (ImageFiles, [‘\.(tif|tiff|gif|bmp|jpg|jpeg|jp2|png|pcx|pgm|ppm|pbm|xwd|ima|hobj)$’,‘ignore_case’], ImageFiles)
for Index := 0 to |ImageFiles| - 1 by 1
read_image (ImageBatch, ImageFiles[Index])
gen_dl_samples_from_images (ImageBatch, DLSampleBatch)
preprocess_dl_samples (DLSampleBatch, DLPreprocessParam)
apply_dl_model (DLModelHandle, DLSampleBatch, [], DLResultBatch)
DLSample := DLSampleBatch[0]
DLResult := DLResultBatch[0]
*获取识别结果 参数:分类的结果,批处理中图像的索引,通用参数的名称,通用参数的值
get_dict_tuple (DLResult, ‘classification_class_ids’, ClassificationClassID)
get_dict_tuple (DLResult, ‘classification_class_names’, ClassificationClassName)
get_dict_tuple (DLResult, ‘classification_confidences’, ClassificationClassConfidence)
dev_display (ImageBatch)
Text := ‘预测类为: ’ + ClassificationClassName[0] + ’ 置信度:’+ClassificationClassConfidence[0]
dev_disp_text (Text, ‘window’, ‘top’, ‘left’, ‘red’, ‘box’, ‘false’)
stop ()
endfor
dev_close_window_dict (WindowHandleDict)

在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Halcon深度学习分类例程主要包括以下几个步骤: 1. 设置窗体:通过代码设置窗体的大小和字体等属性。 2. 将图片打上标签:使用深度学习分类模型对原始数据进行标签处理,包括设置输入路径、方法、图片路径、图片标签等。 3. 将图片处理为分类模型所需要的图片:将原始图片处理为分类模型所需的图片格式。 4. 将图片的数据集进行拆分:对处理后的图片数据集进行拆分,包括训练集、验证集和测试集。 5. 设置分类模型所需的参数和环境:根据模型的要求设置图片的参数,包括图片大小、通道数和灰度值范围等。 6. 重新生成一个新的分类模型:根据设置的参数和环境重新生成一个新的分类模型。 7. 训练:使用生成的分类模型对训练集进行训练。 8. 验证:使用生成的分类模型对验证集进行验证。 9. 测试:使用生成的分类模型对测试集进行测试。 具体的代码实现和使用方法可以参考Halcon的官方文档或者相关教程。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *2* *3* [Halcon 深度学习(一):分类](https://blog.csdn.net/qq_41373415/article/details/115544750)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值