pytorch搭建神经网络(回归)

这篇博客介绍了如何使用PyTorch搭建一个简单的神经网络进行回归任务。通过定义网络结构、设置优化器和损失函数,以及进行训练迭代,最终实现对数据的预测,并实时展示了学习过程的损失变化和预测曲线。
摘要由CSDN通过智能技术生成
import torch
import torch.nn.functional as F     # 激励函数都在这
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size())                 # noisy y data (tensor), shape=(100, 1)
class Net(torch.nn.Module):  # 继承 torch 的 Module(固定)
    def __init__(self, n_feature, n_hidden, n_output):    #定义层的信息,n_feature多少个输入, n_hidden每层神经元, n_output多少个输出
        super(Net, self).__init__()     # 继承 __init__ 功能(固定)
        # 定义每层用什么样的形式
        self.hidden = torch.nn.Linear(n_feature, n_hidden)   # 定义隐藏层,线性输出
        self.predict = torch.nn.Linear(n_hidden, n_output)   # 定义输出层线性输出

    def forward(self, x):   # x是输入信息就是data,同时也是 Module 中的 forward 功能,定义神经网络前向传递的过程,把__init__中的层信息一个一个的组合起来
        # 正向传播输入值, 神经网络分析出输出值
        x = F.relu(self.hidden(x))      # 定义激励函数(隐藏层的线性值)
        x = self.predict(x)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值