电力现货价格模型中的贝叶斯校正与跳变分量个数
Matlab/C++-Mex源代码MCMC算法,保证正确
模拟现货电价峰值。
这是通过开发用于贝叶斯模型校准的马尔可夫链蒙特卡罗(MCMC)程序和模型充分性的贝叶斯评估(后验预测检查)来实现的。
通过将消季节化的电力现货价格建模为扩散的总和过程和多重有符号跳跃过程的确定性强度,并应用了贝叶斯算法校正程序和后验诊断,我们已经确定了一类多因素模型。
适合在两个不同的市场和两个不同的时期建模实证价格。
与最近几项使用随机波动模型的研究相比,我们采用了随机波动模型
多个有符号跳转组件,尽管具有更简单的确定性波动(要么是常量,或确定性和周期性)。
这种方法可以直接比较不同市场和时间段的价格统计结构:每个模型都有许多有符号的跳跃分量,它们具有不同的跳跃强度、衰减率和大小分布。
多因素模型,贝叶斯校准,马尔可夫链蒙特卡罗,Ornstein-Uhlenbeck过程,电力现货价格,
ID:48200638269211528
SourseCode
电力现货价格模型中的贝叶斯校正与跳变分量个数
在电力市场中,现货电价的波动性较大,其模拟和预测成为了一个重要的研究方向。本文通过开发基于贝叶斯模型校准的马尔可夫链蒙特卡罗(MCMC)算法,并结合贝叶斯评估方法,实现了对现货电价峰值的模拟。
在模型的构建中,我们将季节性调整后的电力现货价格建模为扩散的总和过程和多个有符号跳跃过程的确定性强度。通过应用贝叶斯算法进行校正,并进行后验诊断,我们成功地确定了一类多因素模型,适用于不同市场和时间段的价格建模。
与最近使用随机波动模型的研究相比,我们的模型引入了多个有符号跳跃组件,虽然其波动性更简单(常量、确定性和周期性)。这种方法可以直接比较不同市场和时间段的价格统计结构,每个模型都包含多个有符号的跳跃分量,它们具有不同的跳跃强度、衰减率和大小分布。
本文所采用的贝叶斯校正方法能够有效地将模型校准到实际数据中,从而提高模型的预测准确性。根据实证结果,我们发现多因素模型能够更好地拟合电力现货价格的波动特征,并能够较为准确地捕捉到峰值的出现。
总的来说,本文基于贝叶斯校正的方法结合马尔可夫链蒙特卡罗算法,成功地构建了电力现货价格模型,并对其进行了校准和评估。通过引入多个有符号跳跃分量,我们得到了更准确、更符合实际的模型。这一研究对电力市场的运营和投资决策有着重要的指导意义,能够帮助市场参与者更好地理解和应对电力现货价格的波动性。
关键词:电力现货价格、贝叶斯校正、马尔可夫链蒙特卡罗、Ornstein-Uhlenbeck过程、多因素模型
相关的代码,程序地址如下:http://imgcs.cn/638269211528.html