regularized logistic regression

在这里插入图片描述
为了避免过拟合,加入正则化参数:
在这里插入图片描述
θo不需要正则化,故梯度更新公式为:
在这里插入图片描述
为了获得更多的特征,分别对x1、x2获得六次幂:
在这里插入图片描述
用工具库求参数:
在这里插入图片描述
画出决策边界:

在这里插入图片描述
改变λ。λ=100时欠拟合:
在这里插入图片描述

λ=0时过拟合:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值