前向传播神经网络模型:
激活函数:
对输出进行编码:
加入正则化项的代价函数:
反向传播神经网络模型:
△的更新公式:
反向传播神经网络的梯度公式为:
加入正则化项后:
对比之前线性回归的梯度公式:
梯度检测
对Θ随机初始化
最后用优化算法算出θ
结果评测:
优化算法:
前向传播神经网络模型:
激活函数:
对输出进行编码:
加入正则化项的代价函数:
反向传播神经网络模型:
△的更新公式:
反向传播神经网络的梯度公式为:
加入正则化项后:
对比之前线性回归的梯度公式:
梯度检测
对Θ随机初始化
最后用优化算法算出θ
结果评测:
优化算法: