一、部署 InternLM2-Chat-1.8B
模型进行智能对话
1、调用库介绍
(1)huggingface-hub
:用于从 Hugging Face 模型和数据集的中心库中下载和共享模型、数据集和训练代码。
(2)transformers
:提供了一个用于自然语言处理(NLP)任务的强大工具包,包括预训练模型(如BERT、GPT等)、模型微调和模型部署的功能。
(3)psutil
:提供了一个跨平台的进程和系统工具库,用于获取有关系统资源利用率(CPU、内存、磁盘、网络等)的信息,并能够进行进程管理等操作。
(4)accelerate
:用于加速深度学习训练过程的库,通过使用分布式训练和混合精度等技术来提高训练效率。
(5)streamlit
:用于创建交互式 Web 应用程序的库,可以通过简单的 Python 脚本快速构建数据可视化工具和演示应用。
(6)matplotlib
:提供了广泛的绘图功能,用于创建各种类型的静态、交互式和动画图表,是数据可视化领域的常用工具之一。
(7)modelscope
:用于分析和可视化深度学习模型的库,可以帮助理解模型结构、参数和性能,以及进行模型优化和解释性分析。
(8)sentencepiece
:提供了用于文本分词的工具,特别适用于处理多语言文本和非空格分隔符语言的分词任务。
2、模型下载及调用
运行download_mini.py
下载模型,再运行cli_demo.py
创建会话,调用 model.stream_chat
方法,该循环能够不断地接收用户输入,并将其作为对话的一部分输入给模型,以生成连贯的对话响应;如果用户输入的文本是 “exit”,则退出循环,结束程序。
运行结果:
二、实战:部署实战营优秀作品 八戒-Chat-1.8B
模型
1、模型介绍
八戒-Chat-1.8B
是利用《西游记》剧本中所有关于猪八戒的台词和语句以及 LLM API 生成的相关数据结果,进行全量微调得到的猪八戒聊天模型。作为 Roleplay-with-XiYou
子项目之一,八戒-Chat-1.8B
能够以较低的训练成本达到不错的角色模仿能力,同时低部署条件能够为后续工作降低算力门槛。
2、调用模型
git clone https://gitee.com/InternLM/Tutorial -b camp2
利用上述代码获取仓库中的Demo文件。
python /root/Tutorial/helloworld/bajie_download.py
利用上述代码下载模型。
streamlit run /root/Tutorial/helloworld/bajie_chat.py --server.address 127.0.0.1 --server.port 6006
利用上述代码运行 Streamlit 应用程序,与服务器地址为 127.0.0.1
,端口号为 6006
的主机建立连接。Streamlit 是一个用于创建数据应用程序的开源库,它可以让用户使用 Python 快速构建交互式的 Web 应用程序。
# 将下方端口号 38374 替换成自己的端口号
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 38374
在Powershell中输入上述命令和密码建立连接,注意同意指纹验证,并且需要允许应用通过防火墙,否则连接会被拒绝。完成后Powershell的窗口实例如下:
打开浏览器访问 http://127.0.0.1:6006,键入“你好,请自我介绍”提示词,即可生成对应文本。IDE和API截图如下:
三、实战:使用 Lagent
运行 InternLM2-Chat-7B
模型
1、Lagent知识介绍
Lagent 是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。它的整个框架图如下:
Lagent 的特性总结如下:
- 流式输出:提供 stream_chat 接口作流式输出,本地就能演示酷炫的流式 Demo。
- 接口统一,设计全面升级,提升拓展性,包括:
- Model : 不论是 OpenAI API, Transformers 还是推理加速框架 LMDeploy 一网打尽,模型切换可以游刃有余;
- Action: 简单的继承和装饰,即可打造自己个人的工具集,不论 InternLM 还是 GPT 均可适配;
- Agent:与 Model 的输入接口保持一致,模型到智能体的蜕变只需一步,便捷各种 agent 的探索实现;
- 文档全面升级,API 文档全覆盖。
2、模型下载与部署
git clone https://gitee.com/internlm/lagent.git
# git clone https://github.com/internlm/lagent.git
cd /root/demo/lagent
git checkout 581d9fb8987a5d9b72bb9ebd37a95efd47d479ac
pip install -e . # 源码安装
利用以上命令安装Lagent代码库,如下图:
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b
在 terminal 中输入以上指令,构造软链接快捷访问方式。随后修改internlm2_agent_web_demo_hf.py
文件使模型调用InternLM2-Chat-7B
模型。
streamlit run /root/demo/lagent/examples/internlm2_agent_web_demo_hf.py --server.address 127.0.0.1 --server.port 6006
输入以上命令运行 Streamlit 应用程序,并在Powershell中登录。打开 http://127.0.0.1:6006 后,选中数据分析,其他的选项不要选择,进行计算方面的 Demo 对话。对话截图如下:
四、实战:实践部署 浦语·灵笔2
模型
1、XComposer2
相关知识
浦语·灵笔2
是基于 书生·浦语2
大语言模型研发的突破性的图文多模态大模型,具有非凡的图文写作和图像理解能力,在多种应用场景表现出色,总结起来其具有:
- 自由指令输入的图文写作能力:
浦语·灵笔2
可以理解自由形式的图文指令输入,包括大纲、文章细节要求、参考图片等,为用户打造图文并貌的专属文章。生成的文章文采斐然,图文相得益彰,提供沉浸式的阅读体验。 - 准确的图文问题解答能力:
浦语·灵笔2
具有海量图文知识,可以准确的回复各种图文问答难题,在识别、感知、细节描述、视觉推理等能力上表现惊人。 - 杰出的综合能力:
浦语·灵笔2-7B
基于书生·浦语2-7B
模型,在13项多模态评测中大幅领先同量级多模态模型,在其中6项评测中超过GPT-4V
和Gemini Pro
。
2、模型调用
激活demo的conda环境后运行下列代码安装补充库并下载 InternLM-XComposer 仓库 相关的代码资源。
pip install timm==0.4.12 sentencepiece==0.1.99 markdown2==2.4.10 xlsxwriter==3.1.2 gradio==4.13.0 modelscope==1.9.5
cd /root/demo
git clone https://gitee.com/internlm/InternLM-XComposer.git
# git clone https://github.com/internlm/InternLM-XComposer.git
cd /root/demo/InternLM-XComposer
git checkout f31220eddca2cf6246ee2ddf8e375a40457ff626
对上述新安装的库作一介绍:
1)timm 是 “Torch Image Models” 的缩写,是一个用于PyTorch的模型库。它提供了大量预训练的计算机视觉模型,并简化了使用这些模型进行图像分类、目标检测等任务的流程。
2)sentencepiece 是一个无监督的文本分词工具,它可以将连续的文本序列分割成子词单元(subword units)。这在处理自然语言处理任务时非常有用,特别是对于那些词汇量大或包含很多稀有词汇的语言。
3)markdown2 是一个Python库,用于将Markdown格式的文本转换为HTML。Markdown是一种轻量级的标记语言,它允许人们使用易读易写的纯文本格式来编写文档,然后转换为格式丰富的HTML。
4)xlsxwriter 是一个用于创建Excel XLSX文件的Python库。它允许你以编程方式创建、修改和写入Excel文件,支持多种功能,如添加格式、图表等。
5)gradio 是一个快速构建机器学习接口的Python库。它允许你轻松地创建Web应用,以可视化的方式展示你的机器学习模型,使得用户能够与之交互。
6)modelscope 是一个开源的模型共享平台,它提供了大量的预训练模型以及使用这些模型进行推理的工具。它旨在让模型的使用变得更加简单,并提供了一致的API来加载和运行模型。
出现了版本不匹配的问题,更新package版本即可。
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-7b /root/models/internlm-xcomposer2-7b
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-vl-7b /root/models/internlm-xcomposer2-vl-7b
cd /root/demo/InternLM-XComposer
python /root/demo/InternLM-XComposer/examples/gradio_demo_composition.py \
--code_path /root/models/internlm-xcomposer2-7b \
--private \
--num_gpus 1 \
--port 6006
在 terminal
中输入指令,构造软链接快捷访问方式,启动 InternLM-XComposer
,并在Powershell中登录,打开 http://127.0.0.1:6006,效果如图所示。
运行 gradio
程序完成后,在 terminal
栏目中点击关闭,然后再重新打开一个 terminal
以继续后面的实验。否则会出现显存耗尽的情况。
3、图片理解实战
激活demo的conda环境后,输入指令,启动 InternLM-XComposer2-vl
。
cd /root/demo/InternLM-XComposer
python /root/demo/InternLM-XComposer/examples/gradio_demo_chat.py \
--code_path /root/models/internlm-xcomposer2-vl-7b \
--private \
--num_gpus 1 \
--port 6006
打开 http://127.0.0.1:6006,上传图片,让模型分析一下图中内容,示例如下:
五、Hugging Face模型下载
使用 Hugging Face
官方提供的 huggingface-cli
命令行工具安装依赖:
pip install -U huggingface_hub
新建Python文件,代码如下:
import os
# 下载模型
os.system('huggingface-cli download --resume-download internlm/internlm2-chat-7b --local-dir your_path')
下载config.json
文件:
import os
from huggingface_hub import hf_hub_download # Load model directly
hf_hub_download(repo_id="internlm/internlm2-7b", filename="config.json")